Evolutionary Biology

, Volume 38, Issue 1, pp 52–67 | Cite as

Sexual Dimorphism Increases Evolvability in a Genetic Regulatory Network

  • Janna L. FierstEmail author
Research Article


The majority of work on genetic regulatory networks has focused on environmental and mutational robustness, and much less attention has been paid to the conditions under which a network may produce an evolvable phenotype. Sexually dimorphic characters often show rapid rates of change over short evolutionary time scales and while this is thought to be due to the strength of sexual selection acting on the trait, a dimorphic character with an underlying pleiotropic architecture may also influence the evolution of the regulatory network that controls the character and affect evolvability. As evolvability indicates a capacity for phenotypic change and mutational robustness refers to a capacity for phenotypic stasis, increases in evolvability may show a negative relationship with mutational robustness. I tested this with a computational model of a genetic regulatory network and found that, contrary to expectation, sexually dimorphic characters exhibited both higher mutational robustness and higher evolvability. Decomposition of the results revealed that linkage disequilibrium within sex and linkage disequilibrium between sexes, two of the three primary components of additive genetic variance and evolvability in quantitative genetics models, contributed to the differences in evolvability between sexually dimorphic and monomorphic populations. These results indicate that producing two pleiotropically linked characters did not constrain either the production of a robust phenotype or adaptive potential. Instead, the genetic system evolved to maximize both quantities.


Genetic regulatory network Mutational robustness Dimorphic trait Epistasis Pleiotropy Linkage disequilibrium 



I would like to thank both my advisors, Thomas F. Hansen and David Houle, for helpful discussions during the development of this research. The manuscript, particularly the figures, benefited from comments from Jason Pienaar and two anonymous reviewers provided insightful suggestions. I would also like to thank the Center for Ecological and Evolutionary Synthesis at the University of Oslo for hosting my research visit. This work was supported by a Norwegian Research Council Leiv Eiriksson Mobility Grant, and a U.S. National Science Foundation Biological Informatics Postdoctoral Fellowship.

Supplementary material

11692_2010_9103_MOESM1_ESM.pdf (157 kb)
PDF (156 KB)


  1. Ahuja, A., & Singh, R. S. (2008). Variation and evolution of male sex combs in drosophila: Nature of selection response and theories of genetic variation for sexual traits. Genetics, 179, 503–509.PubMedCrossRefGoogle Scholar
  2. Aldana, M., Balleza, E., Kauffman, S., & Resendiz, O. (2007). Robustness and evolvability in genetic regulatory networks. Journal of Theoretical Biology, 245, 433–448.PubMedCrossRefGoogle Scholar
  3. Ancel, L. W., & Fontana, W. (2000). Plasticity, evolvability, and modularity in RNA. Journal of Experimental Zoology Part B, 288, 242–283.CrossRefGoogle Scholar
  4. Ancel Meyers, L., Ancel, F. D., & Lachmann, M. (2005). Evolution of genetic potential. PLoS Computational Biology, 1, 236–243.CrossRefGoogle Scholar
  5. Andersson, M. (1994). Sexual Selection. Princeton, New Jersey: Princeton University Press.Google Scholar
  6. Ayroles, J. F., Carbone, M. A., Stone, E. A., Jordan, K. W., Lyman, R. F., Magwire, M. M., Rollmann, S. M., Duncan, L. H., Lawrence, F., Anholt, R. R. H., & Mackay, T. F. C. (2009). Systems genetics of complex traits in Drosophila melanogaster. Nature Genetics, 41, 299–307.PubMedCrossRefGoogle Scholar
  7. Azevedo, R. B. R., Lohaus, R., Srinivasan, S., Dang, K. K., & Burch, C. L. (2006). Sexual reproduction selects for robustness and negative epistasis in artificial gene networks. Nature, 440, 87–90.PubMedCrossRefGoogle Scholar
  8. Baatz, M., & Wagner, G. P. (1997). Adaptive inertia caused by hidden pleiotropic effects. Theoretical Population Biology, 51, 49–66.CrossRefGoogle Scholar
  9. Barmina, O., & Kopp, A. (2007). Sex-specific expression of a hox gene associated with rapid morphological evolution. Developmental Biology, 311, 277–286.PubMedCrossRefGoogle Scholar
  10. Bergman, A., & Siegal, M. (2003). Evolutionary capacitance as a general feature of complex gene networks. Nature, 424, 549–552.PubMedCrossRefGoogle Scholar
  11. Bonduriansky, R., & Chenoweth, S. F. (2009). Intralocus sexual conflict. Trends in Ecology and Evolution, 24, 280–288.PubMedCrossRefGoogle Scholar
  12. Burch, C. L., Chao, L. (2000). Evolvability of an RNA virus is determined by its mutational neighbourhood. Nature, 406, 625–628.PubMedCrossRefGoogle Scholar
  13. Cheverud, J. M., Dow, M. M., & Leutenegger, W. (1985). The quantitative assessment of phylogenetic constraints in comparative analyses: Sexual dimorphism in body weight among primates. Evolution, 39, 1335–1351.CrossRefGoogle Scholar
  14. Ciliberti, S., Martin, O. C., & Wagner, A. (2007a). Innovation and robustness in complex regulatory gene networks. Proceedings of the National Academy of Sciences, 104, 13591–13596.CrossRefGoogle Scholar
  15. Ciliberti, S., Martin, O. C., & Wagner, A. (2007b). Robustness can evolve gradually in complex regulatory gene networks with varying topology. PLoS Computational Biology, 3, e15.PubMedCrossRefGoogle Scholar
  16. Coyne, J. A., Kay, E. H., & Pruett-Jones, S. (2008). The genetic basis of sexual dimorphism in birds. Evolution, 62, 214–219.PubMedGoogle Scholar
  17. Crombach, A., Hogeweg, P., & Sauro, H. M. (2008). Evolution of evolvability in gene regulatory networks. PLoS Computational Biology, 4, 100–112.CrossRefGoogle Scholar
  18. Draghi, J., & Wagner, G. P. (2008). Evolution of evolvability in a developmental model. Evolution, 62, 301–315.PubMedCrossRefGoogle Scholar
  19. Draghi, J., & Wagner, G. P. (2009). The evolutionary dynamics of evolvability in a gene network model. Journal of Evolutionary Biology, 22, 599–611.PubMedCrossRefGoogle Scholar
  20. Draghi, J. A., Parsons, T. L., Wagner, G. P., & Plotkin, J. B. (2010). Mutational robustness can facilitate adaptation. Nature, 463, 353–355.PubMedCrossRefGoogle Scholar
  21. Espinosa-Soto, C., & Wagner, A. (2010). Specialization can drive the evolution of modularity. PLoS Computational Biology, 6, e1000719.PubMedCrossRefGoogle Scholar
  22. Fisher, R. A. (1930). The genetical theory of natural selection. New York: Dover Publications.Google Scholar
  23. Frank, S. A. (1999). Population and quantitative genetics of regulatory networks. Journal of Theoretical Biology, 197, 281–294.PubMedCrossRefGoogle Scholar
  24. Frank, S. A. (2007). Maladapation and the paradox of robustness in evolution. PLoS ONE, 2, e1021.PubMedCrossRefGoogle Scholar
  25. Graur, D., & Li, W.-H. (2000). Fundamentals of molecular evolution, 2nd ed. Sunderland, MA: Sinauer Associates.Google Scholar
  26. Griswold, C. K. (2006). Pleiotropic mutation, modularity and evolvability. Evolution and Development, 8, 81–93.PubMedCrossRefGoogle Scholar
  27. Hansen, T. F. (2003). Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. Biosystems, 69, 83–94.PubMedCrossRefGoogle Scholar
  28. Hansen, T. F., Armbruster, W. S., Carlson, M. L., & Pelabon, C. (2003). Evolvability and genetic constraint in dalechampia blossoms: Genetic correlations and conditional evolvability. Journal of Experimental Zoology Part B, 296B, 23–39.CrossRefGoogle Scholar
  29. He, X., & Zhang, J. (2006). Toward a molecular understanding of pleiotropy. Genetics, 173, 1885–1891.PubMedCrossRefGoogle Scholar
  30. Hermisson, J., & McGregor, A. P. (2008). Pleiotropic scaling and qtl data. Nature, 456, E3–E4.PubMedCrossRefGoogle Scholar
  31. Houle, D. (1992). Comparing evolvability and variability of quantitative traits. Genetics, 130, 195–204.PubMedGoogle Scholar
  32. Jensen, H., Saether, B. E., Ringsby, T. H., Tufto, J., Griffith, S. C., & Ellegren, H. (2003). Sexual variation in heritability and genetic correlations of morphological traits in house sparrow (Passer domesticus). Journal of Evolutionary Biology, 16, 1296–1307.PubMedCrossRefGoogle Scholar
  33. Kashtan, N., & Alon, U. (2005). Spontaneous evolution of modularity and network motifs. Proceedings of the National Academy of Sciences, 102, 13773–13778.CrossRefGoogle Scholar
  34. Kauffman, S. A. (1993). The origins of order. Oxford, England: Oxford University Press.Google Scholar
  35. Koelle, K., Cobey, S., Grenfell, B., & Pascual, M. (2006). Epochal evolution shapes the phylodynamics of interpandemic influenza A (H3N2) in humans. Science, 314, 1898–1903.PubMedCrossRefGoogle Scholar
  36. Lande, R. (1980a). Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution, 34, 292–305.CrossRefGoogle Scholar
  37. Lande, R. (1980b). The genetic covariance between characters maintained by pleiotropic mutations. Genetics, 94, 203–215.PubMedGoogle Scholar
  38. Lenski, R. E., Barrick, J. E., & Ofria, C. (2006). Balancing robustness and evolvability. PLoS Biology, 4, e428.PubMedCrossRefGoogle Scholar
  39. Lynch, M. (2007a). The evolution of genetic networks by non-adaptive processes. Nature Reviews Genetics, 8, 803–813.PubMedCrossRefGoogle Scholar
  40. Lynch, M. (2007b). The frailty of adaptive hypotheses for the origins of organismal complexity. Proceedings of the National Academy of Sciences, 104, 8597–8604.CrossRefGoogle Scholar
  41. Lynch, M., & Walsh, J. B. (1998). Genetics and analysis of quantitative traits. Sunderland, MA: Sinauer Associates.Google Scholar
  42. MacCarthy, T., & Bergman, A. (2007). Coevolution of robustness, epistasis, and recombination favors asexual reproduction. Proceedings of the National Academy of Sciences, 104, 12801–12806.CrossRefGoogle Scholar
  43. Masel, J. (2004). Genetic assimilation can occur in the absence of selection for the assimilating phenotype, suggesting a role for the canalization heuristic. Journal of Evolutionary Biology, 17, 1106–1110.PubMedCrossRefGoogle Scholar
  44. Nas, A. V., Guhathakurta, D., Wang, S. S., Yehya, N., Horvath, S., Zhang, B., Ingram-Drake, L., Chaudhuri, G., Schadt, E. E., Drake, T. A., Arnold, A. P., & Lusis, A. J. (2008). Elucidating the role of gonadal hormones in sexually dimorphic gene coexpression networks. Endocrinology, 150, 1235–1249.PubMedCrossRefGoogle Scholar
  45. Ng, C. S., & Kopp, A. (2008). Sex combs are important for male mating success in Drosophila melanogaster. Behavioral Genetics, 38, 195–201.CrossRefGoogle Scholar
  46. Orr, H. A. (2000). Adaptation and the cost of complexity. Evolution, 54, 13–20.PubMedCrossRefGoogle Scholar
  47. Otto, S. P. (2004). Two steps forward, one step back: The pleiotropic effects of favoured alleles. Proceedings of the Royal Society B: Biological Sciences, 271, 705–714.PubMedCrossRefGoogle Scholar
  48. Palmer, M. E., & Feldman, M. W. (2009). Dynamics of hybrid incompatibility in gene networks in a constant environment. Evolution, 63, 418–431.PubMedCrossRefGoogle Scholar
  49. Parker, T. H., & Garant, D. (2004). Quantitative genetics of sexually dimorphic traits and capture of genetic variance by a sexually-selected condition-dependent ornament in red junglefowl (Gallus gallus). Journal of Evolutionary Biology, 17, 1277–1285.PubMedCrossRefGoogle Scholar
  50. Phillips, P. C., & McGuigan, K. L. (2005). Evolution of genetic variance-covariance structure. In C. W. Fox, J. B. Wolf (Eds.), Evolutionary genetics: Concepts and case studies. Oxford, England: Oxford University Press.Google Scholar
  51. Pigliucci M. (2008). Opinion—is evolvability evolvable? Nature Reviews Genetics 9, 75–82PubMedCrossRefGoogle Scholar
  52. Randsholt, N. B., & Santamaria, P. (2008). How Drosophila change their combs: the hox gene sex combs reduced and sex comb variation among Sophophora species. Evolution and Development, 10, 121–133.PubMedCrossRefGoogle Scholar
  53. Reeve, J. P., & Fairbairn, D. J. (1996). Sexual size dimorphism as a correlated response to selection on body size: An empirical test of the quantitative genetic model. Evolution, 50, 1927–1938.CrossRefGoogle Scholar
  54. Rolff, J., Armitage, S. A. O., & Coltman, D. W. (2005). Genetic constraints and sexual dimorphism in immune defense. Evolution, 59, 1844–1850.PubMedGoogle Scholar
  55. Schlichting, C. D., & Murren, C. J. (2004). Evolvability and the raw materials for adaptation. In Q. C. B. Cronk, J. Whitton, R. H. Ree, & I. E. P. Taylor (Eds.), Plant adaptation: Molecular genetics and ecology. NRC Research Press, Ottawa, Ontario, pp. 18–29.Google Scholar
  56. Siegal, M., & Bergman, A. (2002). Waddington’s canalization revisited: Developmental stability and evolution. Proceedings of the National Academy of Sciences, 99, 10528–10532.CrossRefGoogle Scholar
  57. Siegal, M. L., Promislow, D. E. L., & Bergman, A. (2007). Functional and evolutionary inference in gene networks: Does topology matter? Genetica, 129, 83–103.PubMedCrossRefGoogle Scholar
  58. Sniegowski, P. D., & Murphy, H. A. (2006). Evolvability. Current Biology, 16, R831–R834.PubMedCrossRefGoogle Scholar
  59. Spieth, H. T. (1952). Mating behavior within the genus Drosophila (Diptera). Bulletin of the American Museum of Natural History, 99, 395–474.Google Scholar
  60. Tanaka, K., Barmina, O., & Kopp, A. (2009). Distinct developmental mechanisms underlie the evolutionary diversification of Drosophila sex combs. Proceedings of the National Academy of Sciences, 106, 4764–4769.CrossRefGoogle Scholar
  61. Van Doorn, G. S. (2009). Intralocus sexual conflict. Annals of the New York Academy of Sciences, 1168, 52–71.PubMedCrossRefGoogle Scholar
  62. van Nimwegen, E. (2006). Influenza escapes immunity along neutral networks. Science, 314, 1884–1886.PubMedCrossRefGoogle Scholar
  63. Wagner, A. (1994). Evolution of gene networks by gene duplications—a mathematical-model and its implications on genome organization. Proceedings of the National Academy of Sciences, 91, 4387–4391.CrossRefGoogle Scholar
  64. Wagner, A. (1996). Does evolutionary plasticity evolve? Evolution, 50, 1008–1023.CrossRefGoogle Scholar
  65. Wagner, A. (2005a). Robustness and evolvability in living systems. Princeton, New Jersey: Princeton University press.Google Scholar
  66. Wagner, A. (2005b). Robustness, evolvability, and neutrality. FEBS Letters, 579, 1772–1778.PubMedCrossRefGoogle Scholar
  67. Wagner, A. (2008). Robustness and evolvability: A paradox resolved. Proceedings of the Royal Society B: Biological Sciences, 275, 91–100.PubMedCrossRefGoogle Scholar
  68. Wagner, G. P., & Altenberg, L. (1996). Perspective: Complex adaptations and the evolution of evolvability. Evolution, 50, 967–976.CrossRefGoogle Scholar
  69. Wagner, G. P., Kenney-Hunt, J. P., Pavlicev, M., Peck, J. R., Waxman, D., & Cheverud, J. M. (2008a). Pleiotropic scaling and qtl data reply. Nature, 456, E4–E4.CrossRefGoogle Scholar
  70. Wagner, G. P., Kenney-Hunt, J. P., Pavlicev, M., Peck, J. R., Waxman, D., & Cheverud, J. M. (2008b). Pleiotropic scaling of gene effects and the ‘cost of complexity’. Nature, 452, 470–472.PubMedCrossRefGoogle Scholar
  71. Wagner, G. P., Pavlicev, M., & Cheverud, J. M. (2007). The road to modularity. Nature Reviews Genetics, 8, 921–931.PubMedCrossRefGoogle Scholar
  72. Wang, Z., Liao, B.-Y., & Zhang, J. (2010). Genomic patterns of pleiotropy and the evolution of complexity. Proceedings of the National Academy of Sciences, 107, 18034–18039.CrossRefGoogle Scholar
  73. Welch, J. J. & Waxman, D. (2003). Modularity and the cost of complexity. Evolution, 57, 1723–1734.PubMedGoogle Scholar
  74. Williams, G. C. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11, 398–411.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Biological ScienceKing Life Sciences Building, Florida State UniversityTallahasseeUSA
  2. 2.Center for Ecology and Evolutionary BiologyUniversity of OregonEugeneUSA

Personalised recommendations