Evolutionary Biology

, Volume 37, Issue 2–3, pp 113–122 | Cite as

The Evo-Devo Puzzle of Human Hair Patterning

Essay

Notes

Acknowledgments

Iterated drafts of the manuscript were kindly critiqued by David Arnosti, Tom Brody, Jason Cooper, Nancy McIntyre, Jeff Thomas, Kenneth Weiss, and Adam Wilkins. Encouragement was provided by Benedikt Hallgrímsson. Matt Hoffman, a primate expert at the University of Wisconsin, helped me locate dozens of photos of newborn apes. Finally, I thank all of the zoo personnel around the world who responded so unselfishly to my requests for pictures and data.

References

  1. Andl, T., Reddy, S. T., Gaddapara, T., & Millar, S. E. (2002). WNT signals are required for the initiation of hair follicle development. Developmental Cell, 2, 643–653.CrossRefPubMedGoogle Scholar
  2. Arnosti, D. N. (2003). Analysis and function of transcriptional regulatory elements: Insights from Drosophila. Annual Review of Entomology, 48, 579–602.CrossRefPubMedGoogle Scholar
  3. Arnosti, D. N., & Kulkarni, M. M. (2005). Transcriptional enhancers: intelligent enhanceosomes or flexible billboards? Journal of Cellular Biochemistry, 94, 890–898.CrossRefPubMedGoogle Scholar
  4. Barnes, J. (Ed.). (1984). The Complete Works of Aristotle: The Revised Oxford Translation. Princeton: Princeton University Press.Google Scholar
  5. Baumeister, F. A. M., Egger, J., Schildhauer, M. T., & Stengel-Rutkowski, S. (1993). Ambras syndrome: delineation of a unique hypertrichosis universalis congenita and association with a balanced pericentric inversion (8) (p11.2; q22). Clinical Genetics, 44, 121–128.CrossRefPubMedGoogle Scholar
  6. Bergman, J. (2002). Darwin’s ape-men and the exploitation of deformed humans. Technical Journal, 16, 116–122.Google Scholar
  7. Bohring, A., Stamm, T., Spaich, C., Haase, C., Spree, K., Hehr, U., et al. (2009). WNT10A mutations are a frequent cause of a broad spectrum of ectodermal dysplasias with sex-biased manifestation pattern in heterozygotes. American Journal of Human Genetics, 85, 97–105.CrossRefPubMedGoogle Scholar
  8. Bolk, L. (1926). Das Problem der Menschwerdung. Jena: Gustav Fischer.Google Scholar
  9. Borok, M. J., Tran, D. A., Ho, M. C. W., & Drewell, R. A. (2010). Dissecting the regulatory switches of development: lessons from enhancer evolution in Drosophila. Development, 137, 5–13.CrossRefPubMedGoogle Scholar
  10. Brigham, P. A., Cappas, A., & Uno, H. (1988). The stumptailed macaque as a model for androgenetic alopecia: effects of topical minoxidil analyzed by use of the folliculogram. Clinics in Dermatology, 6(4), 177–187.CrossRefPubMedGoogle Scholar
  11. Bulger, M., & Groudine, M. (2010). Enhancers: the abundance and function of regulatory sequences beyond promoters. Developmental Biology, 339, 250–257.CrossRefPubMedGoogle Scholar
  12. Cadieu, E., Neff, M. W., Quignon, P., Walsh, K., Chase, K., Parker, H. G., et al. (2009). Coat variation in the domestic dog is governed by variants in three genes. Science, 326, 150–153.CrossRefPubMedGoogle Scholar
  13. DasGupta, R., & Fuchs, E. (1999). Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development, 126, 4557–4568.PubMedGoogle Scholar
  14. de Beer, G. (1958). Embryos and Ancestors. Oxford: Clarendon Press.Google Scholar
  15. Drimmer, F. (1973). Very Special People. New York: Amjon Publishing.Google Scholar
  16. Drögemüller, C., Karlsson, E. K., Hytönen, M. K., Perloski, M., Dolf, G., Sainio, K., et al. (2008). A mutation in hairless dogs implicates FOXI3 in ectodermal development. Science, 321, 1462.CrossRefPubMedGoogle Scholar
  17. Duboule, D. (1998a). Hox is in the hair: a break in colinearity? Genes and Development, 12, 1–4.CrossRefPubMedGoogle Scholar
  18. Duboule, D. (1998b). Vertebrate Hox gene regulation: clustering and/or colinearity? Current Opinion in Genetics and Development, 8, 514–518.CrossRefPubMedGoogle Scholar
  19. Dun, R. B. (1958). Growth of the mouse coat. VI. Distribution and number of vibrissae in the house mouse. Australian Journal of Biological Sciences, 2, 95–105.Google Scholar
  20. Edgar, B. A., & Orr-Weaver, T. L. (2001). Endoreplication cell cycles: more for less. Cell, 105, 297–306.CrossRefPubMedGoogle Scholar
  21. Enard, D., Depaulis, F., & Crollius, H. R. (2010). Human and non-human primate genomes share hotspots of positive selection. PLoS Genetics, 6(2), e1000840.CrossRefPubMedGoogle Scholar
  22. Fantauzzo, K. A., Tadin-Strapps, M., You, Y., Mentzer, S. E., Baumeister, F. A. M., Cianfarani, S., et al. (2008). A position effect on TRPS1 is associated with Ambras syndrome in humans and the Koala phenotype in mice. Human Molecular Genetics, 17, 3539–3551.CrossRefPubMedGoogle Scholar
  23. Figuera, L. E., Pandolfo, M., Dunne, P. W., Cantú, J. M., & Patel, P. I. (1995). Mapping of the congenital generalized hypertrichosis locus to chromosome Xq24–q27.1. Nature Genetics, 10, 202–207.CrossRefPubMedGoogle Scholar
  24. Fuchs, E. (2007). Scratching the surface of skin development. Nature, 445, 834–842.CrossRefPubMedGoogle Scholar
  25. Gao, W.-Q. (2003). Hair cell development in higher vertebrates. Current Topics in Developmental Biology, 57, 293–319.CrossRefPubMedGoogle Scholar
  26. Garcia-Cruz, D., Figuera, L. E., & Cantu, J. M. (2002). Inherited hypertrichoses. Clinical Genetics, 61, 321–329.CrossRefPubMedGoogle Scholar
  27. Gibert, J.-M., & Simpson, P. (2003). Evolution of cis-regulation of the proneural genes. International Journal of Developmental Biology, 47, 643–651.PubMedGoogle Scholar
  28. Golovnin, A., Biryukova, I., Romanova, O., Silicheva, M., Parshikov, A., Savitskaya, E., et al. (2003). An endogenous Su(Hw) insulator separates the yellow gene from the Achaetescute gene complex in Drosophila. Development, 130, 3249–3258.CrossRefPubMedGoogle Scholar
  29. Gómez-Skarmeta, J. L., Rodríguez, I., Martínez, C., Culí, J., Ferrés-Marcó, D., Beamonte, D., et al. (1995). Cis-regulation of achaete and scute: shared enhancer-like elements drive their coexpression in proneural clusters of the imaginal discs. Genes and Development, 9, 1869–1882.CrossRefPubMedGoogle Scholar
  30. Gould, S. J. (1977). Ontogeny and Phylogeny. Cambridge: Harvard University Press.Google Scholar
  31. Hallgrímsson, B., Brown, J. J. Y., & Hall, B. K. (2005). The study of phenotypic variability: an emerging research agenda for understanding the developmental-genetic architecture underlying phenotypic variation. In B. Hallgrímsson & B. K. Hall (Eds.), Variation: A Central Concept in Biology (pp. 525–551). New York: Elsevier Academic Press.Google Scholar
  32. Hallgrímsson, B., Jamniczky, H., Young, N. M., Rolian, C., Parsons, T. E., Boughner, J. C., et al. (2009). Deciphering the palimpsest: Studying the relationship between morphological integration and phenotypic covariation. Evolutionary Biology, 36, 355–376.CrossRefGoogle Scholar
  33. Heintzman, N. D., & Ren, B. (2009). Finding distal regulatory elements in the human genome. Current Opinion in Genetics and Development, 19, 541–549.CrossRefPubMedGoogle Scholar
  34. Held, L. I., Jr. (2002). Imaginal Discs: The Genetic and Cellular Logic of Pattern Formation. New York: Cambridge University Press.CrossRefGoogle Scholar
  35. Held, L. I., Jr. (2009). Quirks of Human Anatomy: An Evo-Devo Look at the Human Body. New York: Cambridge University Press.CrossRefGoogle Scholar
  36. Hershkovitz, P. (1977). Living New World Monkeys (Platyrrhini) With an Introduction to Primates. Chicago: University of Chicago Press.Google Scholar
  37. Hillmer, A. M., Flaquer, A., Hanneken, S., Eigelshoven, S., Kortüm, A.-K., Brockschmidt, F. F., et al. (2008). Genome-wide scan and fine-mapping linkage study of androgenetic alopecia reveals a locus on chromosome 3q26. American Journal of Human Genetics, 82, 737–743.CrossRefPubMedGoogle Scholar
  38. Hoekstra, H. E. (2006). Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity, 97, 222–234.CrossRefPubMedGoogle Scholar
  39. Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G., & Birchmeier, W. (2001). β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell, 105, 533–545.CrossRefPubMedGoogle Scholar
  40. Ito, M., Yang, Z., Andl, T., Cui, C., Kim, N., Millar, S. E., et al. (2007). Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature, 447, 316–320.CrossRefPubMedGoogle Scholar
  41. Jablonski, N. G. (2010). The naked truth. Scientific American, 302(2), 42–49.CrossRefPubMedGoogle Scholar
  42. Jahoda, C. A. B. (1998). Cellular and developmental aspects of androgenetic alopecia. Experimental Dermatology, 7, 235–248.PubMedGoogle Scholar
  43. Kidd, W. (1920). Initiative in Evolution. London: H. F. & G. Witherby.Google Scholar
  44. Kirikoshi, H., Sekihara, H., & Katoh, M. (2001). WNT10A and WNT6, clustered in human chromosome 2q35 region with head-to-tail manner, are strongly coexpressed in SW480 cells. Biochemical and Biophysical Research Communications, 283, 798–805.CrossRefPubMedGoogle Scholar
  45. Kunhardt, P. B, Jr., Kunhardt, P. B, III., & Kunhardt, P. W. (1995). P. T. Barnum: America’s Greatest Showman. New York: Knopf.Google Scholar
  46. Lemons, D., & McGinnis, W. (2006). Genomic evolution of Hox gene clusters. Science, 313, 1918–1922.CrossRefPubMedGoogle Scholar
  47. Lin, J. Y., & Fisher, D. E. (2007). Melanocyte biology and skin pigmentation. Nature, 445, 843–850.CrossRefPubMedGoogle Scholar
  48. Lo Celso, C., Prowse, D. M., & Watt, F. M. (2004). Transient activation of β-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development, 131, 1787–1799.CrossRefPubMedGoogle Scholar
  49. Mackay, T. F. C., & Anholt, R. R. H. (2006). Of flies and man: Drosophila as a model for human complex traits. Annual Review of Genomics and Human Genetics, 7, 339–367.CrossRefPubMedGoogle Scholar
  50. Marcellini, S., & Simpson, P. (2006). Two or four bristles: functional evolution of an enhancer of scute in Drosophilidae. PLoS Biology, 4(12), e386.CrossRefPubMedGoogle Scholar
  51. Marshall, C. R., Raff, E. C., & Raff, R. A. (1994). Dollo's law and the death and resurrection of genes. PNAS, 91, 12283–12287.CrossRefPubMedGoogle Scholar
  52. Martini, F. H., Ober, W. C., Garrison, C. W., Welch, K., Hutchings, R. T., & Ireland, K. (2004). Fundamentals of Anatomy & Physiology. San Francisco: Benjamin Cummings.Google Scholar
  53. McKinney, M. L., & McNamara, K. J. (1991). Heterochrony: The Evolution of Ontogeny. New York: Plenum Press.Google Scholar
  54. McKusick, V. A. (1998). Mendelian Inheritance in Man: A Catalog of Human Genes and Genetic Disorders. Baltimore: Johns Hopkins University Press.Google Scholar
  55. McLean, W. H. I. (2008). Combing the genome for the root cause of baldness. Nature Genetics, 11, 1270–1271.CrossRefGoogle Scholar
  56. Millar, S. E., Willert, K., Salinas, P. C., Roelink, H., Nusse, R., Sussman, D. J., et al. (1999). WNT signaling in the control of hair growth and structure. Developmental Biology, 207, 133–149.CrossRefPubMedGoogle Scholar
  57. Miller, G. S., Jr. (1931). Human hair and primate patterning. Smithsonian Miscellaneous Collections, 85(10), 1–13. (Publ. No. 3130, plus 5 plates).Google Scholar
  58. Montagu, M. F. A. (1962). Time, morphology, and neoteny in the evolution of man. In M. F. A. Montagu (Ed.), Culture and the Evolution of Man (pp. 324–342). New York: Oxford University Press.Google Scholar
  59. Naef, A. (1926). Über die Urformen der Anthropomorphen und die Stammesgeschichte des Menschenschädels. Naturwissenschaften, 14, 445–452.CrossRefGoogle Scholar
  60. Närhi, K., Järvinen, E., Birchmeier, W., Taketo, M. M., Mikkola, M. L., & Thesleff, I. (2008). Sustained epithelial β-catenin activity induces precocious hair development but disrupts hair follicle down-growth and hair shaft formation. Development, 135, 1019–1028.CrossRefPubMedGoogle Scholar
  61. Noonan, J. P. (2009). Regulatory DNAs and the evolution of human development. Current Opinion in Genetics and Development, 19, 557–564.CrossRefPubMedGoogle Scholar
  62. Nyholt, D. R., Gillespie, N. A., Heath, A. C., & Martin, N. G. (2003). Genetic basis of male pattern baldness. Journal of Investigative Dermatology, 121, 1561–1564.CrossRefPubMedGoogle Scholar
  63. Oury, F., Murakami, Y., Renaud, J.-S., Pasqualetti, M., Charnay, P., Ren, S.-Y., et al. (2006). Hoxa2- and rhombomere-dependent development of the mouse facial somatosensory map. Science, 313, 1408–1413.CrossRefPubMedGoogle Scholar
  64. Pan, Y., Tsai, C.-J., Ma, B., & Nussinov, R. (2010). Mechanisms of transcription factor selectivity. Trends in Genetics, 26, 75–83.CrossRefPubMedGoogle Scholar
  65. Pearson, H. (2007). The roots of accomplishment. Nature, 446, 20–21.CrossRefPubMedGoogle Scholar
  66. Randall, V. A. (2007). Hormonal regulation of hair follicles exhibits a biological paradox. Seminars in Cell & Developmental Bology, 18, 274–285.CrossRefGoogle Scholar
  67. Rogers, G. E. (2004). Hair follicle differentiation and regulation. International Journal of Developmental Biology, 48, 163–170.CrossRefPubMedGoogle Scholar
  68. Rolian, C., & Willmore, K. E. (2009). Morphological integration at 50: patterns and processes of integration in biological anthropology. Evolutionary Biology, 36, 1–4.CrossRefGoogle Scholar
  69. Rusting, R. L. (2001). Hair: Why it grows, why it stops. Scientific American, 284(6), 70–79.CrossRefPubMedGoogle Scholar
  70. Sarin, K. Y., & Artandi, S. E. (2007). Aging, graying and loss of melanocyte stem cells. Stem Cell Reviews, 3, 212–217.CrossRefPubMedGoogle Scholar
  71. Sato, T. R., Gray, N. W., Mainen, Z. F., & Svoboda, K. (2007). The functional microarchitecture of the mouse barrel cortex. PLoS Biology, 5(7), e189.CrossRefPubMedGoogle Scholar
  72. Schmidt-Ullrich, R., & Paus, R. (2005). Molecular principles of hair follicle induction and morphogenesis. BioEssays, 27, 247–261.CrossRefPubMedGoogle Scholar
  73. Schneider, M. R., Schmidt-Ullrich, R., & Paus, R. (2009). The hair follicle as a dynamic miniorgan. Current Biology, 19, R132–R142.CrossRefPubMedGoogle Scholar
  74. Seifert, J. R. K., & Mlodzik, M. (2007). Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nature Reviews Genetics, 8, 126–138.CrossRefPubMedGoogle Scholar
  75. Shimomura, Y., Agalliu, D., Vonica, A., Luria, V., Wajid, M., Baumer, A., et al. (2010). APCDD1 is a novel Wnt inhibitor mutated in hereditary hypotrichosis simplex. Nature, 464, 1043–1047.CrossRefPubMedGoogle Scholar
  76. Sholtis, S. J., & Noonan, J. P. (2010). Gene regulation and the origins of human biological uniqueness. Trends in Genetics, 26, 110–118.CrossRefPubMedGoogle Scholar
  77. Sick, S., Reinker, S., Timmer, J., & Schlake, T. (2006). WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science, 314, 1447–1450.CrossRefPubMedGoogle Scholar
  78. Simpson, P. (2007). The stars and stripes of animal bodies: evolution of regulatory elements mediating pigment and bristle patterns in Drosophila. Trends in Genetics, 23, 350–358.CrossRefPubMedGoogle Scholar
  79. Simpson, P., & Marcellini, S. (2006). The origin and evolution of stereotyped patterns of macrochaetes on the nota of cyclorraphous Diptera. Heredity, 97, 148–156.CrossRefPubMedGoogle Scholar
  80. Simpson, P., Lewis, M., & Richardson, J. (2006). Conservation of upstream regulators of scute on the notum of cyclorraphous Diptera. Development Genes and Evolution, 216, 363–371.CrossRefPubMedGoogle Scholar
  81. Sinclair, R. (1998). Male pattern androgenetic alopecia. BMJ, 317, 865–869.PubMedGoogle Scholar
  82. Skaer, N., Pistillo, D., & Simpson, P. (2002). Transcriptional heterochrony of scute and changes in bristle pattern between two closely related species of blowfly. Developmental Biology, 252, 31–45.CrossRefPubMedGoogle Scholar
  83. Smith, K. K. (2003). Time’s arrow: heterochrony and the evolution of development. International Journal of Developmental Biology, 47, 613–621.PubMedGoogle Scholar
  84. Sun, M., Li, N., Dong, W., Chen, Z., Liu, Q., Xu, Y., et al. (2009). Copy-number mutations on chromosome 17q24.2–q24.3 in congenital generalized hypertrichosis terminalis with or without gingival hyperplasia. American Journal of Human Genetics, 84, 807–813.CrossRefPubMedGoogle Scholar
  85. Swanson, C. I., Evans, N. C., & Barolo, S. (2010). Structural rules and complex regulatory circuitry constrain expression of a Notch- and EGFR-regulated eye enhancer. Developmental Cell, 18, 359–370.CrossRefPubMedGoogle Scholar
  86. Tadin-Strapps, M., Salas-Alanis, J. C., Moreno, L., Warburton, D., Martinez-Mir, A., & Christiano, A. M. (2003). Congenital universal hypertrichosis with deafness and dental anomalies inherited as an X-linked trait. Clinical Genetics, 63, 418–422.CrossRefPubMedGoogle Scholar
  87. Tomita, K., Moriyoshi, K., Nakanishi, S., Guillemot, F., & Kageyama, R. (2000). Mammalian achaetescute and atonal homologs regulate neuronal versus glial fate determination in the central nervous system. EMBO Journal, 19, 5460–5472.CrossRefPubMedGoogle Scholar
  88. van Amerongen, R., & Nusse, R. (2009). Towards an integrated view of Wnt signaling in development. Development, 136, 3205–3214.CrossRefPubMedGoogle Scholar
  89. Vidal, V. P. I., Chaboissier, M.-C., Lützkendorf, S., Cotsarelis, G., Mill, P., Hui, C.-C., et al. (2005). Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. Current Biology, 15, 1340–1351.CrossRefPubMedGoogle Scholar
  90. von Luschan, F. (1907). Ein Haarmensch. Zeitschrift für Ethnologie, 39, 425–429.Google Scholar
  91. Weirauch, M. T., & Hughes, T. R. (2010). Conserved expression without conserved regulatory sequence: the more things change, the more they stay the same. Trends in Genetics, 26, 66–74.CrossRefPubMedGoogle Scholar
  92. Wendelin, D. S., Pope, D. N., & Mallor, S. B. (2003). Hypertrichosis. Journal of the American Academy of Dermatology, 48, 161–179.CrossRefPubMedGoogle Scholar
  93. Wray, G. A. (2003). Transcriptional regulation and the evolution of development. International Journal of Developmental Biology, 47, 675–684.PubMedGoogle Scholar
  94. Wrenn, J. T., & Wessells, N. K. (1984). The early development of mystacial vibrissae in the mouse. Journal of Embryology and Experimental Morphology, 83, 137–156.PubMedGoogle Scholar
  95. Wu, P., Hou, L., Plikus, M., Hughes, M., Scehnet, J., Suksaweang, S., et al. (2004). Evo-Devo of amniote integuments and appendages. International Journal of Developmental Biology, 48, 249–270.CrossRefPubMedGoogle Scholar
  96. Zeitlinger, J., & Stark, A. (2010). Developmental gene regulation in the era of genomics. Developmental Biology, 339, 230–239.CrossRefPubMedGoogle Scholar
  97. Zhang, Y., Andl, T., Yang, S. H., Teta, M., Liu, F., Seykora, J. T., et al. (2008). Activation of β-catenin signaling programs embryonic epidermis to hair follicle fate. Development, 135, 2161–2172.CrossRefPubMedGoogle Scholar
  98. Zhang, Y., Tomann, P., Andl, T., Gallant, N. M., Huelsken, J., Jerchow, B., et al. (2009). Reciprocal requirements for EDA/EDAR/NF-κB and Wnt/β-catenin signaling pathways in hair follicle induction. Devlopmental Cell, 17, 49–61.CrossRefGoogle Scholar
  99. Zhou, P., Byrne, C., Jacobs, J., & Fuchs, E. (1995). Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes and Development, 9, 570–583.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Biological SciencesTexas Tech UniversityLubbockTXUSA

Personalised recommendations