Evolutionary Biology

, Volume 37, Issue 2–3, pp 93–99 | Cite as

Evolutionary Novelty and the Evo-Devo Synthesis: Field Notes

  • Ingo BrigandtEmail author
  • Alan C. Love
Synthesis Paper


Accounting for the evolutionary origins of morphological novelty is one of the core challenges of contemporary evolutionary biology. A successful explanatory framework requires the integration of different biological disciplines, but the relationships between developmental biology and standard evolutionary biology remain contested. There is also disagreement about how to define the concept of evolutionary novelty. These issues were the subjects of a workshop held in November 2009 at the University of Alberta. We report on the discussion and results of this workshop, addressing questions about (i) how to define evolutionary novelty and understand its significance, (ii) how to interpret evolutionary developmental biology as a synthesis and its relation to neo-Darwinian evolutionary theory, and (iii) how to integrate disparate biological approaches in general.


Evolutionary developmental biology Interdisciplinarity Evolutionary novelty Evolutionary innovation Concepts 



We thank the participants of the workshop ‘Integrating Different Biological Approaches’ (November 13–15, 2009, University of Alberta) for their discussion contributions, which formed the basis of this paper. Ingo Brigandt’s work is supported by the Social Sciences and Humanities Research Council of Canada (Standard Research Grant 410-2008-0400). Alan Love’s work is supported by the McKnight Land-Grant Professorship at the University of Minnesota.


  1. Boisvert, C. A., Mark-Kurik, E., & Ahlberg, P. E. (2008). The pectoral fin of Panderichthys and the origin of digits. Nature, 456, 636–638.CrossRefPubMedGoogle Scholar
  2. Brigandt, I. (in press). Beyond reduction and pluralism: Toward an epistemology of explanatory integration in biology. Erkenntnis.Google Scholar
  3. Brigandt, I., & Love, A. C. (2008). Reductionism in biology. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Fall 2008 edn.)
  4. Carroll, S. B. (2005). Endless forms most beautiful: The new science of evo-devo. New York: WW Norton.Google Scholar
  5. Davidson, E. H., & Erwin, D. H. (2006). Gene regulatory networks and the evolution of animal body plans. Science, 311, 796–800.CrossRefPubMedGoogle Scholar
  6. Delsuc, F., Brinkmann, H., Chourrout, D., & Philippe, H. (2006). Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature, 439, 965–968.CrossRefPubMedGoogle Scholar
  7. Donoghue, M. J. (1992). Homology. In E. F. Keller & E. A. Lloyd (Eds.), Keywords in evolutionary biology (pp. 170–179). Cambridge, MA: Harvard University Press.Google Scholar
  8. Erwin, D. H. (2010). Microevolution and macroevolution are not governed by the same processes. In F. Ayala & R. Arp (Eds.), Contemporary debates in the philosophy of biology (pp. 180–193). Malden: Wiley-Blackwell.Google Scholar
  9. Futuyma, D. J. (1998). Evolutionary biology (3rd ed.). Sunderland: Sinauer Associates.Google Scholar
  10. Galis, F. (2001). Key innovations and radiations. In G. P. Wagner (Ed.), The character concept in evolutionary biology (pp. 581–605). San Diego: Academic Press.CrossRefGoogle Scholar
  11. Gilbert, S. F., Opitz, J. M., & Raff, R. A. (1996). Resynthesizing evolutionary and developmental biology. Developmental Biology, 173, 357–372.CrossRefPubMedGoogle Scholar
  12. Grantham, T. A. (2004). The role of fossils in phylogeny reconstruction: Why is it so difficult to integrate paleontological and neontological evolutionary biology? Biology and Philosophy, 19, 687–720.CrossRefGoogle Scholar
  13. Grantham, T. A. (2007). Is macroevolution more than successive rounds of microevolution? Palaeontology, 50, 75–85.CrossRefGoogle Scholar
  14. Griffiths, P. E. (2007). The phenomena of homology. Biology and Philosophy, 22, 643–658.CrossRefGoogle Scholar
  15. Hall, B. K. (2000). Evo-devo or devo-evo: Does it matter? Evolution and Development, 2, 177–178.CrossRefPubMedGoogle Scholar
  16. Hall, B. K. (2005). Consideration of the neural crest and its skeletal derivatives in the context of novelty/innovation. Journal of Experimental Zoology (Molecular and Developmental Evolution), 304B, 548–557.CrossRefGoogle Scholar
  17. Hallgrímmson, B., & Hall, B. K. (Eds.). (2005). Variation: A central concept in biology. San Diego: Elsevier, Academic Press.Google Scholar
  18. Hallgrímsson, B., Lieberman, D. E., Liu, W., Ford-Hutchinson, A. F., & Jirik, F. R. (2007). Epigenetic interactions and the structure of phenotypic variation in the cranium. Evolution and Development, 9, 76–91.CrossRefPubMedGoogle Scholar
  19. Hendrikse, J. L., Parsons, T. E., & Hallgrímsson, B. (2007). Evolvability as the proper focus of evolutionary developmental biology. Evolution and Development, 9, 393–401.CrossRefPubMedGoogle Scholar
  20. Hoekstra, H. E., & Coyne, J. A. (2007). The locus of evolution: Evo-devo and the genetics of adaptation. Evolution, 61, 995–1016.CrossRefPubMedGoogle Scholar
  21. Jeffery, W. R., Strickler, A. G., & Yamamoto, Y. (2004). Migratory neural crest-like cells form body pigmentation in a urochordate embryo. Nature, 431, 696–699.CrossRefPubMedGoogle Scholar
  22. Kirschner, M. W., & Gerhart, J. C. (2005). The plausibility of life: Resolving Darwin’s dilemma. New Haven: Yale University Press.Google Scholar
  23. Laubichler, M. (2010). Evolutionary developmental biology offers a significant challenge to the neo-Darwinian paradigm. In F. Ayala & R. Arp (Eds.), Contemporary debates in the philosophy of biology (pp. 199–212). Malden: Wiley-Blackwell.Google Scholar
  24. Love, A. C. (2003). Evolutionary morphology, innovation, and the synthesis of evolutionary and developmental biology. Biology and Philosophy, 18, 309–345.CrossRefGoogle Scholar
  25. Love, A. C. (2006). Evolutionary morphology and evo-devo: Hierarchy and novelty. Theory in Biosciences, 124, 317–333.CrossRefPubMedGoogle Scholar
  26. Love, A. C. (2008). Explaining evolutionary innovation and novelty: Criteria of explanatory adequacy and epistemological prerequisites. Philosophy of Science, 75, 874–886.CrossRefGoogle Scholar
  27. Love, A. C. (2010). Rethinking the structure of evolutionary theory for an extended synthesis. In G. Müller & M. Pigliucci (Eds.), Evolution: The extended synthesis (pp. 403–441). Cambridge, MA: MIT Press.Google Scholar
  28. Love, A. C., & Raff, R. A. (2003). Knowing your ancestors: Themes in the history of evo-devo. Evolution and Development, 5, 327–330.CrossRefPubMedGoogle Scholar
  29. Mayr, E. (1960). The emergence of evolutionary novelties. In S. Tax (Ed.), Evolution after Darwin: The evolution of life: Its origin, history, and future (Vol. 1, pp. 349–380). Chicago: University of Chicago Press.Google Scholar
  30. Michon, F., & Tummers, M. (2009). The dynamic interest in topics within the biomedical scientific community. PLoS ONE, 4, e6544.CrossRefPubMedGoogle Scholar
  31. Minelli, A. (2003). The development of animal form: Ontogeny, morphology, and evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  32. Minelli, A. (2010). Evolutionary developmental biology does not offer a significant challenge to the neo-Darwinian paradigm. In F. Ayala & R. Arp (Eds.), Contemporary debates in the philosophy of biology (pp. 213–226). Malden: Wiley-Blackwell.Google Scholar
  33. Moczek, A. P. (2008). On the origins of novelty in development and evolution. BioEssays, 30, 432–447.CrossRefPubMedGoogle Scholar
  34. Müller, G. B. (1990). Developmental mechanisms at the origin of morphological novelty: A side-effect hypothesis. In M. H. Nitecki (Ed.), Evolutionary innovations (pp. 99–130). Chicago: University of Chicago Press.Google Scholar
  35. Müller, G. B. (2007). Six memos for evo-devo. In M. D. Laubichler & J. Maienschein (Eds.), From embryology to evo-devo: A history of developmental evolution (pp. 499–524). Cambridge, MA: MIT Press.Google Scholar
  36. Müller, G. B., & Newman, S. A. (2005). The innovation triad: An EvoDevo agenda. Journal of Experimental Zoology (Molecular and Developmental Evolution), 304B, 487–503.CrossRefGoogle Scholar
  37. Müller, G. B., & Wagner, G. P. (2003). Innovation. In B. K. Hall & W. M. Olson (Eds.), Keywords and concepts in evolutionary developmental biology (pp. 218–227). Cambridge, MA: Harvard University Press.Google Scholar
  38. Newman, S. A., & Müller, G. B. (2005). Origination and innovation in the vertebrate limb skeleton: An epigenetic perspective. Journal of Experimental Zoology (Molecular and Developmental Evolution), 304B, 593–609.CrossRefGoogle Scholar
  39. Oakley, T. H. (2007). Today’s multiple choice exam: (a) gene duplication; (b) structural mutation; (c) co-option; (d) regulatory mutation; (e) all of the above. Evolution and Development, 9, 523–524.CrossRefPubMedGoogle Scholar
  40. Palmer, A. R. (2004). Symmetry breaking and the evolution of development. Science, 306, 828–833.CrossRefPubMedGoogle Scholar
  41. Pigliucci, M. (2009). An extended synthesis for evolutionary biology. Annals of the New York Academy of Sciences, 1168, 218–228.CrossRefPubMedGoogle Scholar
  42. Raff, R. A. (2000). Evo-devo: The evolution of a new discipline. Nature Reviews Genetics, 1, 74–79.CrossRefPubMedGoogle Scholar
  43. Reeve, H. K., & Sherman, P. W. (1993). Adaptation and the goals of evolutionary research. Quarterly Review of Biology, 68, 1–32.CrossRefGoogle Scholar
  44. Repko, A. F. (2008). Interdisciplinary research: Process and theory. Thousand Oaks: Sage Publications.Google Scholar
  45. Rice, S. H. (2004). Evolutionary theory: Mathematical and conceptual foundations. Sunderland: Sinauer Associates.Google Scholar
  46. Robert, J. (2002). How developmental is evolutionary developmental biology? Biology and Philosophy, 17, 591–611.CrossRefGoogle Scholar
  47. Sauka-Spengler, T., Meulemans, D., Jones, M., & Bronner-Fraser, M. (2007). Ancient evolutionary origin of the neural crest gene regulatory network. Developmental Cell, 13, 405–420.CrossRefPubMedGoogle Scholar
  48. Schonberger, R. B., & Rosenbaum, S. H. (2009). Not much novel under the sun. Science, 326, 1480–1481.CrossRefPubMedGoogle Scholar
  49. Sterelny, K. (2000). Development, evolution, and adaptation. Philosophy of Science, 67, S369–S387.CrossRefGoogle Scholar
  50. Stone, J. R., & Hall, B. K. (2004). Latent homologues for the neural crest as an evolutionary novelty. Evolution and Development, 6, 123–129.CrossRefPubMedGoogle Scholar
  51. Szostak, R. (2002). How to do interdisciplinarity: Integrating the debate. Issues in Integrative Studies, 20, 103–122.Google Scholar
  52. Szostak, R. (2009). The causes of economic growth: Interdisciplinary perspectives. Berlin: Springer.Google Scholar
  53. Wagner, G. P. (2005). The developmental evolution of avian digit homology: an update. Theory in Biosciences, 124, 165–183.PubMedGoogle Scholar
  54. Wagner, G. P. (2007). How wide and how deep is the divide between population genetics and developmental evolution? Biology and Philosophy, 22, 145–153.CrossRefGoogle Scholar
  55. Wagner, G. P., & Larsson, H. C. E. (2003). What is the promise of developmental evolution? Part III: The crucible of developmental evolution. Journal of Experimental Zoology (Molecular and Developmental Evolution), 300B, 1–4.CrossRefGoogle Scholar
  56. Wagner, G. P., & Larsson, H. C. E. (2006). Fins and limbs in the study of evolutionary novelties. In B. K. Hall (Ed.), Fins into limbs: Evolution, development, and transformation (pp. 49–61). Chicago: University of Chicago Press.Google Scholar
  57. Wake, D. B. (1996). Evolutionary developmental biology: Prospects for an evolutionary synthesis at the developmental level. Memoirs of the California Academy of Sciences, 20, 97–107.Google Scholar
  58. Wake, D. B. (2003). Homology and homoplasy. In B. K. Hall & W. M. Olson (Eds.), Keywords and concepts in evolutionary developmental biology (pp. 191–201). Cambridge, MA: Harvard University Press.Google Scholar
  59. West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford: Oxford University Press.Google Scholar
  60. West-Eberhard, M. J. (2008). Toward a modern revival of Darwin’s theory of evolutionary novelty. Philosophy of Science, 75, 899–908.CrossRefGoogle Scholar
  61. Wilkins, A. S. (2002). The evolution of developmental pathways. Sunderland: Sinauer Associates.Google Scholar
  62. Xu, X., Clark, J. M., Mo, J., Choiniere, J., Forster, C. A., Erickson, G. M., et al. (2009). A Jurassic ceratosaur from China helps clarify avian digital homologies. Nature, 459, 940–944.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of AlbertaEdmontonCanada
  2. 2.Department of Philosophy, Minnesota Center for Philosophy of ScienceUniversity of MinnesotaMinneapolisUSA

Personalised recommendations