Evolutionary Biology

, Volume 37, Issue 1, pp 38–48 | Cite as

Age, Body Size, and Sexual Dimorphism in Size and Shape in Salamandrella keyserlingii (Caudata: Hynobiidae)

  • Masato HasumiEmail author
Research Article


In organisms with determinate growth, sexual size dimorphism (SSD) occurs before maturity during the developmental process of growing apart, an ontogenetic perspective on the evolution of SSD. If the direction of SSD (female-larger SSD) is known, patterns of growth can be tested with one-tailed statistical distributions. In indeterminate growing organisms as well, does SSD occur before maturity? If it occurs, whether is females’ larger mean body size caused by a difference in age at maturity, age-specific size, divergent growth prior to maturity, or selection on post-maturational growth? How important is biphasic, sexual shape dimorphism (BSSD) for determinants of SSD? Biphasic characteristics are those that differ between adult aquatic- and terrestrial-phase morphs, and shape is size of a characteristic relative to body size. To address those questions, I determined age and body size based on a careful description of a growth trajectory for each sex in Salamandrella keyserlingii, using 555 independent data points from skeletochronological studies. Females reached maturity at 3–4 years of age, a year later than males that reached maturity at 2–3 years of age (mean body size: males = 57.63 mm, females = 61.70 mm; delayed sexual maturity resulted in SSD). However, SSD was highly detected before maturity (SSD index = 0.097), and females after maturity continued to grow and resulted in larger asymptotic size than males. Traits of BSSD were greater in males than in females. These results suggest that when determining SSD the difference in mean adult-body size results from the difference in age-specific size and the female-larger SSD develops to resolve intersexual ontogenetic conflict by allowing small-sized males to swell their whole body during the aquatic phase as much as large-sized females.


Age at maturity Age structure Growth trajectory Indeterminate growth Population structure Skeletochronology 



Cordial thanks are due to F. Kanda and all staff members of Onnenai Visitor Center, Kushiro Shitsugen National Park, for their partial support during my stay in Kushiro, and T. Kusano for discussing on independence of data. I am indebted to T. Halliday, C. Miaud, and D. Sever for critically reviewing the manuscript. I express my gratitude for the constructive comments of an onymous reviewer, J. Malmgren, and an anonymous reviewer. Handling of S. keyserlingii is regulated by the Government of Kushiro-shi, and this study was conducted under the permission authorized by this government. This study was financially supported in part by Grants-in-Aid for Scientific Research from the Japanese Foundation for the Management of Riparian Environments, the Maeda Ippo-en Foundation (Japan), and the Akiyama Memorial Foundation (Japan) for the Promotion of Life Sciences.


  1. Andersson, M. (1994). Sexual selection. Princeton, NJ: Princeton University Press.Google Scholar
  2. Arntzen, J. W. (2000). A growth curve for the newt Triturus cristatus. Journal of Herpetology, 34, 227–232.CrossRefGoogle Scholar
  3. Badyaev, A. V. (2002). Growing apart: An ontogenetic perspective on the evolution of sexual size dimorphism. Trends in Ecology & Evolution, 17, 369–378.CrossRefGoogle Scholar
  4. Barot, S., Heino, M., O’Brien, L., & Dieckmann, U. (2004). Estimating reaction norms for age and size at maturation when age at first reproduction is unknown. Evolutionary Ecology Research, 6, 659–678.Google Scholar
  5. Blackwell, E. A., Angus, R. A., Cline, G. R., & Marion, K. R. (2003). Natural growth rates of Ambystoma maculatum in Alabama. Journal of Herpetology, 37, 608–612.CrossRefGoogle Scholar
  6. Borkin, L. (1999). Salamandrella keyserlingii Dybowski, 1870. Sibirischer Winkelzahnmolch. In K. Grossenbacher & B. Thiesmeier (Eds.), Handbuch der Reptilien und Amphibien Europas, Vol. 4/1, Urodela 1 (pp. 21–55). Wiesbaden, Hessen, Deutschland: Aula-Verlag.Google Scholar
  7. Bruce, R. C. (1993). Sexual size dimorphism in desmognathine salamanders. Copeia, 1993, 313–318.CrossRefGoogle Scholar
  8. Bruce, R. C. (2000). Sexual size dimorphism in the Plethodontidae. In R. C. Bruce, R. G. Jaeger, & L. D. Houck (Eds.), The biology of plethodontid salamanders (pp. 243–260). New York: Kluwer Academic/Plenum Publishers.Google Scholar
  9. Caetano, M. H., & Castanet, J. (1993). Variability and microevolutionary patterns in Triturus marmoratus from Portugal: Age, size, longevity and individual growth. Amphibia-Reptilia, 14, 117–129.CrossRefGoogle Scholar
  10. Charnov, E. L. (1993). Life history invariants. Oxford: Oxford University Press.Google Scholar
  11. Cox, R. M., & John-Alder, H. B. (2007). Growing apart together: The development of contrasting sexual size dimorphisms in systematic Sceloporus lizards. Herpetologica, 63, 245–257.CrossRefGoogle Scholar
  12. Czarnoleski, M., & Kozlowski, J. (1998). Do Bertalanffy’s growth curves result from optimal resource allocation? Ecology Letters, 1, 5–7.CrossRefGoogle Scholar
  13. Day, T., & Taylor, P. D. (1997). Von Bertalanffy’s growth equation should not be used to model age and size at maturity. American Naturalist, 149, 381–393.CrossRefGoogle Scholar
  14. Duellman, W. E., & Trueb, L. (1986). Biology of amphibians. New York: McGraw-Hill.Google Scholar
  15. Dunham, A. E. (1978). Food availability as a proximate factor influencing individual growth rates in the iguanid lizard Sceloporus merriami. Ecology, 59, 770–778.CrossRefGoogle Scholar
  16. Eden, C. J., Whiteman, H. H., Duobinis-Gray, L., & Wissinger, S. A. (2007). Accuracy assessment of skeletochronology in the Arizona tiger salamander (Ambystoma tigrinum nebulosum). Copeia, 2007, 471–477.CrossRefGoogle Scholar
  17. Francillon-Vieillot, H., Arntzen, J. W., & Géraudie, J. (1990). Age, growth and longevity of sympatric Triturus cristatus, T. marmoratus and their hybrids (Amphibia, Urodela): A skeletochronological comparison. Journal of Herpetology, 24, 13–22.CrossRefGoogle Scholar
  18. Griffiths, A. D., & Brook, B. W. (2005). Body size and growth in tropical small mammals: Examining variation using non-linear mixed effects models. Journal of Zoology (London), 267, 211–220.CrossRefGoogle Scholar
  19. Halliday, T., & Tejedo, M. (1995). Intrasexual selection and alternative mating behaviour. In H. Heatwole & B. K. Sullivan (Eds.), Amphibian biology, Vol. 2, Social behaviour (pp. 419–468). Chipping Norton, New South Wales, Australia: Surrey Beatty and Sons.Google Scholar
  20. Halliday, T. R., & Verrell, P. A. (1988). Body size and age in amphibians and reptiles. Journal of Herpetology, 22, 253–265.CrossRefGoogle Scholar
  21. Hasumi, M. (1994). Reproductive behavior of the salamander Hynobius nigrescens: Monopoly of egg sacs during scramble competition. Journal of Herpetology, 28, 264–267.CrossRefGoogle Scholar
  22. Hasumi, M. (1996). Times required for ovulation, egg sac formation, and ventral gland secretion in the salamander Hynobius nigrescens. Herpetologica, 52, 605–611.Google Scholar
  23. Hasumi, M. (2001a). Sexual behavior in female-biased operational sex ratios in the salamander Hynobius nigrescens. Herpetologica, 57, 396–406.Google Scholar
  24. Hasumi, M. (2001b). Secondary sexual characteristics of the salamander Salamandrella keyserlingii: Throat coloration. Herpetological Review, 32, 223–225.Google Scholar
  25. Hasumi, M., Hongorzul, T., & Terbish, K. (2009). Burrow use by Salamandrella keyserlingii (Caudata: Hynobiidae). Copeia, 2009, 46–49.CrossRefGoogle Scholar
  26. Hasumi, M., & Iwasawa, H. (1990). Seasonal changes in body shape and mass in the salamander, Hynobius nigrescens. Journal of Herpetology, 24, 113–118.CrossRefGoogle Scholar
  27. Hasumi, M., & Kanda, F. (1998). Breeding habitats of the Siberian salamander (Salamandrella keyserlingii) within a fen in Kushiro Marsh, Japan. Herpetological Review, 29, 150–153.Google Scholar
  28. Hasumi, M., & Kanda, F. (2007). Phenological activity estimated by movement patterns of the Siberian salamander near a fen. Herpetologica, 63, 163–175.CrossRefGoogle Scholar
  29. Hasumi, M., & Watanabe, Y. G. (2007). An efficient method for skeletochronology. Herpetological Review, 38, 404–406.Google Scholar
  30. Heino, M., & Kaitala, V. (1999). Evolution of resource allocation between growth and reproduction in animals with indeterminate growth. Journal of Evolutionary Biology, 12, 423–429.CrossRefGoogle Scholar
  31. Hemelaar, A. (1988). Age, growth and other population characteristics of Bufo bufo from different latitudes and altitudes. Journal of Herpetology, 22, 369–388.CrossRefGoogle Scholar
  32. John-Alder, H. B., Cox, R. M., & Taylor, E. N. (2007). Proximate developmental mediators of sexual dimorphism in size: Case studies from squamate reptiles. Integrative and Comparative Biology, 47, 258–271.CrossRefGoogle Scholar
  33. Kirkpatrick, M. (1984). Demographic models based on size, not age, for organisms with indeterminate growth. Ecology, 65, 1874–1884.CrossRefGoogle Scholar
  34. Kozlowski, J., & Uchmañski, J. (1987). Optimal individual growth and reproduction in perennial species with indeterminate growth. Evolutionary Ecology, 1, 214–230.CrossRefGoogle Scholar
  35. Kusano, T., Ueda, T., & Nakagawa, H. (2006). Body size and age structure of breeding populations of the salamander, Hynobius tokyoensis (Caudata: Hynobiidae). Current Herpetology, 25, 71–78.CrossRefGoogle Scholar
  36. Kuzmin, S. L. (1994). The geographical range of Salamandrella keyserlingii: Ecological and historical implications. Abhandlungen und Berichte für Naturkunde, 17, 177–183.Google Scholar
  37. Kyriakopoulou-Sklavounou, P., Stylianou, P., & Tsiora, A. (2008). A skeletochronological study of age, growth and longevity in a population of the frog Rana ridibunda from southern Europe. Zoology, 111, 30–36.CrossRefPubMedGoogle Scholar
  38. Leclair, M. H., Levasseur, M., & Leclair, R., Jr. (2006). Life-history traits of Plethodon cinereus in the northern parts of its range: Variations in population structure, age and growth. Herpetologica, 62, 265–282.CrossRefGoogle Scholar
  39. Lester, N. P., Shuter, B. J., & Abrams, P. A. (2004). Interpreting the von Bertalanffy model of somatic growth in fishes: The cost of reproduction. Proceedings of the Royal Society of London B, Biological Sciences, 271, 1625–1631.CrossRefGoogle Scholar
  40. Lovich, J. E., & Gibbons, J. W. (1992). A review of techniques for quantifying sexual size dimorphism. Growth, Development, and Aging, 56, 269–281.PubMedGoogle Scholar
  41. Maerz, J. C., Myers, E. M., & Adams, D. C. (2006). Trophic polymorphism in a terrestrial salamander. Evolutionary Ecology Research, 8, 23–35.Google Scholar
  42. Maiorana, V. C. (1976). Size and environmental predictability for salamanders. Evolution, 30, 599–613.CrossRefGoogle Scholar
  43. Malmgren, J. C., & Thollesson, M. (1999). Sexual size and shape dimorphism in two species of newts, Triturus cristatus and T. vulgaris (Caudata: Salamandridae). Journal of Zoology (London), 249, 127–136.CrossRefGoogle Scholar
  44. Marangoni, F., Schaefer, E., Cajade, R., & Tejedo, M. (2009). Growth-mark formation and chronology of two neotropical anuran species. Journal of Herpetology, 43, 546–550.CrossRefGoogle Scholar
  45. Marvin, G. A. (2001). Age, growth, and long-term site fidelity in the terrestrial plethodontid salamander Plethodon kentucki. Copeia, 2001, 108–117.CrossRefGoogle Scholar
  46. Marvin, G. A. (2009). Sexual and seasonal dimorphism in the Cumberland Plateau woodland salamander, Plethodon kentucki (Caudata: Plethodontidae). Copeia, 2009, 227–232.CrossRefGoogle Scholar
  47. McKenzie, J., Page, B., Goldsworthy, S. D., & Hindell, M. A. (2007). Growth strategies of New Zealand fur seals in southern Australia. Journal of Zoology (London), 272, 377–389.CrossRefGoogle Scholar
  48. Miaud, C., Andreone, F., Ribéron, A., De Michelis, S., Clima, V., Castanet, J., et al. (2001). Variations in age, size at maturity and gestation duration among two neighbouring populations of the alpine salamander (Salamandra lanzai). Journal of Zoology (London), 254, 251–260.CrossRefGoogle Scholar
  49. Miaud, C., Guyétant, R., & Elmberg, J. (1999). Variation in life-history traits in the common frog Rana temporaria (Amphibia: Anura): A literature review and new data from the French Alps. Journal of Zoology (London), 249, 61–73.CrossRefGoogle Scholar
  50. Miaud, C., Guyetant, R., & Faber, H. (2000). Age, size, and growth of the Alpine newt, Triturus alpestris (Urodela: Salamandridae), at high altitude and a review of life-history trait variation throughout its range. Herpetologica, 56, 135–144.Google Scholar
  51. Monnet, M. J., & Cherry, M. I. (2002). Sexual size dimorphism in anurans. Proceedings of the Royal Society of London B, Biological Sciences, 269, 2301–2307.CrossRefGoogle Scholar
  52. Olgun, K., Miaud, C., & Gautier, P. (2001). Age, growth, and survivorship in the viviparous salamander Mertensiella luschani from southwestern Turkey. Canadian Journal of Zoology, 79, 1559–1567.CrossRefGoogle Scholar
  53. Olsson, M., & Shine, R. (1996). Does reproductive success increase with age or with size in species with indeterminate growth? A case study using sand lizards (Lacerta agilis). Oecologia, 105, 175–178.Google Scholar
  54. Pough, F. H., Andrews, R. M., Cadle, J. E., Crump, M. L., Savitzky, A. H., & Wells, K. D. (2001). Herpetology (2nd ed.). Upper Saddle River, NJ: Prentice-Hall.Google Scholar
  55. Salthe, S. N. (1969). Reproductive modes and the numbers and sizes of ova in the urodeles. American Midland Naturalist, 81, 467–490.CrossRefGoogle Scholar
  56. Salvidio, S., & Bruce, R. C. (2006). Sexual dimorphism in two species of European plethodontid salamanders, genus Speleomantes. Herpetological Journal, 16, 9–14.Google Scholar
  57. Scott, D. A. (1991). Asia and the Middle East. In M. Finlayson & M. Moser (Eds.), Wetlands (pp. 149–178). Oxford: Facts On File.Google Scholar
  58. Tarling, G. A., & Cuzin-Roudy, J. (2003). Synchronization in the molting and spawning activity of northern krill (Meganyctiphanes norvegica) and its effect on recruitment. Limnology and Oceanography, 48, 2020–2033.CrossRefGoogle Scholar
  59. Tsiora, A., & Kyriakopoulou-Sklavounou, P. (2002). A skeletochronological study of age and growth in relation to adult size in the water frog Rana epeirotica. Zoology, 105, 55–60.CrossRefPubMedGoogle Scholar
  60. Verrell, P. A., & Davis, K. (2003). Do non-breeding, adult long-toed salamanders respond to conspecifics as friends or as foes? Herpetologica, 59, 1–7.CrossRefGoogle Scholar
  61. von Bertalanffy, L. (1938). A quantitative theory of organic growth (inquiries on growth laws. II). Human Biology, 10, 181–213.Google Scholar
  62. Williams, R. N., & DeWoody, J. A. (2009). Reproductive success and sexual selection in wild eastern tiger salamanders (Ambystoma t. tigrinum). Evolutionary Biology, 36, 201–213.CrossRefGoogle Scholar
  63. Wise, S. E., & Buchanan, B. W. (1992). An efficient method for measuring salamanders. Herpetological Review, 23, 56–57.Google Scholar
  64. Zeleznik, F. J. (1968). Quasi-Newton methods for nonlinear equations. Journal of the Association for Computing Machinery, 15, 265–271.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Biological Institute, Faculty of ScienceNiigata UniversityNiigataJapan

Personalised recommendations