Advertisement

Evolutionary Biology

, Volume 36, Issue 4, pp 355–376 | Cite as

Deciphering the Palimpsest: Studying the Relationship Between Morphological Integration and Phenotypic Covariation

  • Benedikt Hallgrímsson
  • Heather Jamniczky
  • Nathan M. Young
  • Campbell Rolian
  • Trish E. Parsons
  • Julia C. Boughner
  • Ralph S. Marcucio
Synthesis Paper

Abstract

Organisms represent a complex arrangement of anatomical structures and individuated parts that must maintain functional associations through development. This integration of variation between functionally related body parts and the modular organization of development are fundamental determinants of their evolvability. This is because integration results in the expression of coordinated variation that can create preferred directions for evolutionary change, while modularity enables variation in a group of traits or regions to accumulate without deleterious effects on other aspects of the organism. Using our own work on both model systems (e.g., lab mice, avians) and natural populations of rodents and primates, we explore in this paper the relationship between patterns of phenotypic covariation and the developmental determinants of integration that those patterns are assumed to reflect. We show that integration cannot be reliably studied through phenotypic covariance patterns alone and argue that the relationship between phenotypic covariation and integration is obscured in two ways. One is the superimposition of multiple determinants of covariance in complex systems and the other is the dependence of covariation structure on variances in covariance-generating processes. As a consequence, we argue that the direct study of the developmental determinants of integration in model systems is necessary to fully interpret patterns of covariation in natural populations, to link covariation patterns to the processes that generate them, and to understand their significance for evolutionary explanation.

Keywords

Morphological integration Developmental constraints Covariation Morphometrics Evolvability Mice Rodents Primates 

Notes

Acknowledgements

We are grateful to funding provided through National Science and Engineering Grant 238992-06, Canadian Foundation for Innovation grant #3923, Alberta Innovation and Science grant #URSI-01-103-RI, Canadian Institutes of Health Research grant #131625, Genome Canada and Genome Alberta grant to Hallgrímsson and NIH-NIDCR-R01DE018234 to Marcucio. We thank Wei Liu for computed microtomography scanning and landmarking and Mei Xiao for computer programming.

References

  1. Ackermann, R. R., & Cheverud, J. M. (2000). Phenotypic covariance structure in tamarins (genus Saguinus): A comparison of variation patterns using matrix correlation and common principal component analysis. American Journal of Physical Anthropology, 111(4), 489–501.PubMedGoogle Scholar
  2. Alberch, P. (1982). Developmental constraints in evolutionary processes. In J. T. Bonner (Ed.), Development in evolution (pp. 313–332). Berlin and New York: Springer.Google Scholar
  3. Ballock, R. T., & O’Keefe, R. J. (2003). The biology of the growth plate. Journal of Bone and Joint Surgery—American Volume, 85-A(4), 715–726.Google Scholar
  4. Bastir, M., Rosas, A., & O’Higgins, P. (2006). Craniofacial levels and the morphological maturation of the human skull. Journal of Anatomy, 209(5), 637–654.PubMedGoogle Scholar
  5. Blechschmidt, I. E. (1961). The stages of human development before birth. An introduction to human embryology. Basel: Karger Medical Publishers.Google Scholar
  6. Bookstein, F. L. (1991). Morphometric tools for landmark data. Cambridge: Cambridge University Press.Google Scholar
  7. Bookstein, F. L., Gunz, P., Mitteroecker, P., Prossinger, H., Schaefer, K., & Seidler, H. (2003). Cranial integration in Homo: Singular warps analysis of the midsagittal plane in ontogeny and evolution. Journal of Human Evolution, 44(2), 167–187.PubMedGoogle Scholar
  8. Boughner, J. C., & Hallgrímsson, B. (2008). Biological spacetime and the temporal integration of functional modules: A case study of dento-gnathic developmental timing. Developmental Dynamics, 237(1), 1–17.PubMedGoogle Scholar
  9. Boughner, J. C., Wat, S., Diewert, V. M., Young, N. M., Browder, L. W., & Hallgrímsson, B. (2008). Short-faced mice and developmental interactions between the brain and the face. Journal of Anatomy, 213(6), 646–662.PubMedGoogle Scholar
  10. Burger, R. (1986). Evolutionary dynamics of functionally constrained phenotypic characters. IMA Journal of Mathematics Applied in Medicine and Biology, 3(4), 265–287.PubMedGoogle Scholar
  11. Capdevila, J., & Izpisua Belmonte, J. C. (2001). Patterning mechanisms controlling vertebrate limb development. Annual Review of Cell and Developmental Biology, 17, 87–132.PubMedGoogle Scholar
  12. Cheverud, J. M. (1982). Phenotypic, genetic, and environmental integration in the cranium. Evolution, 36, 499–516.Google Scholar
  13. Cheverud, J. M. (1984). Quantitative genetics and developmental constraints on evolution by selection. Journal of Theoretical Biology, 110, 155–171.PubMedGoogle Scholar
  14. Cheverud, J. M. (1996). Developmental integration and the evolution of pleiotropy. American Zoologist, 36, 44–50.Google Scholar
  15. Cortes, M., Baria, A. T., & Schwartz, N. B. (2009). Sulfation of chondroitin sulfate proteoglycans is necessary for proper Indian hedgehog signaling in the developing growth plate. Development, 136(10), 1697–1706.PubMedGoogle Scholar
  16. Cox, T. C. (2004). Taking it to the max: The genetic and developmental mechanisms coordinating midfacial morphogenesis and dysmorphology. Clinical Genetics, 65(3), 163–176.PubMedGoogle Scholar
  17. Diewert, V. M., & Lozanoff, S. (1993). Growth and morphogenesis of the human embryonic midface during primary palate formation analyzed in frontal sections. Journal of Craniofacial Genetics and Developmental Biology, 13(3), 162–183.PubMedGoogle Scholar
  18. Diez, M., Schweinhardt, P., Petersson, S., Wang, F. H., Lavebratt, C., Schalling, M., et al. (2003). MRI and in situ hybridization reveal early disturbances in brain size and gene expression in the megencephalic (mceph/mceph) mouse. European Journal of Neuroscience, 18(12), 3218–3230.PubMedGoogle Scholar
  19. Donahue, L. R., Cook, S. A., Johnson, K. R., Bronson, R. T., & Davisson, M. T. (1996). Megencephaly: A new mouse mutation on chromosome 6 that causes hypertrophy of the brain. Mammalian Genome, 7(12), 871–876.PubMedGoogle Scholar
  20. Downey, C. M., Horton, C. R., Carlson, B. A., Parsons, T. E., Hatfield, D. L., Hallgrímsson, B., et al. (2009). Osteo-chondroprogenitor-specific deletion of the selenocysteine tRNA gene, Trsp, leads to chondronecrosis and abnormal skeletal development: A putative model for Kashin-Beck disease. PLoS Genetics, 5(8), e1000616.PubMedGoogle Scholar
  21. Dryden, I. L., & Mardia, K. V. (1998). Statistical shape analysis. Chichester: Wiley.Google Scholar
  22. Eberhart, J. K., Swartz, M. E., Crump, J. G., & Kimmel, C. B. (2006). Early Hedgehog signaling from neural to oral epithelium organizes anterior craniofacial development. Development, 133(6), 1069–1077.PubMedGoogle Scholar
  23. Fischer-Rousseau, L., Cloutier, R., & Zelditch, M. L. (2009). Morphological integration and developmental progress during fish ontogeny in two contrasting habitats. Evolution and Development, 11(6), 740–753.PubMedGoogle Scholar
  24. Ford-Hutchinson, A. F., Ali, Z., Lines, S. E., Hallgrímsson, B., Boyd, S. K., & Jirik, F. R. (2007). Inactivation of Pten in osteo-chondroprogenitor cells leads to epiphyseal growth plate abnormalities and skeletal overgrowth. Journal of Bone and Mineral Research, 22(8), 1245–1259.PubMedGoogle Scholar
  25. Ford-Hutchinson, A. F., Ali, Z., Seerattan, R. A., Cooper, D. M., Hallgrímsson, B., Salo, P. T., et al. (2005). Degenerative knee joint disease in mice lacking 3′-phosphoadenosine 5′-phosphosulfate synthetase 2 (Papss2) activity: A putative model of human PAPSS2 deficiency-associated arthrosis. Osteoarthritis and Cartilage, 13(5), 418–425.PubMedGoogle Scholar
  26. Gibson-Brown, J. J., Agulnik, S. I., Chapman, D. L., Alexiou, M., Garvey, N., Silver, L. M., et al. (1996). Evidence of a role for T-box genes in the evolution of limb morphogenesis and the specification of forelimb/hindlimb identity. Mechanisms of Development, 56, 93–101.PubMedGoogle Scholar
  27. Gower, J. C. (1975). Generalized procrustes analysis. Psychometrika, 40(1), 33–51.Google Scholar
  28. Griswold, C. K. (2006). Pleiotropic mutation, modularity and evolvability. Evolution and Development, 8, 81–93.PubMedGoogle Scholar
  29. Gunz, P., & Harvati, K. (2007). The Neanderthal “chignon”: Variation, integration, and homology. Journal of Human Evolution, 52(3), 262–274.PubMedGoogle Scholar
  30. Hagstrom, K. A., & Meyer, B. J. (2003). Condensin and cohesin: More than chromosome compactor and glue. Nature Reviews. Genetics, 4(7), 520–534.PubMedGoogle Scholar
  31. Hall, B. K. (1999). Evolutionary developmental biology. Dordrecht: Kluwer.Google Scholar
  32. Hallgrímsson, B., Brown, J. J. Y., Ford-Hutchinson, A. F., Sheets, H. D., Zelditch, M. L., & Jirik, F. R. (2006). The brachymorph mouse and the developmental-genetic basis for canalization and morphological integration. Evolution & Development, 8(1), 61–73.Google Scholar
  33. Hallgrímsson, B., Dorval, C. J., Zelditch, M. L., & German, R. Z. (2004a). Craniofacial variability and morphological integration in mice susceptible to cleft lip and palate. Journal of Anatomy, 205(6), 501–517.PubMedGoogle Scholar
  34. Hallgrímsson, B., & Lieberman, D. E. (2008). Mouse models and the evolutionary developmental biology of the skull. Integrative and Comparative Biology, 48(3), 373–384.Google Scholar
  35. Hallgrímsson, B., Lieberman, D. E., Liu, W., Ford-Hutchinson, A. F., & Jirik, F. R. (2007a). Epigenetic interactions and the structure of phenotypic variation in the cranium. Evolution and Development, 9(1), 76–91.PubMedGoogle Scholar
  36. Hallgrímsson, B., Lieberman, D. E., Young, N. M., Parsons, T., & Wat, S. (2007b). Evolution of covariance in the mammalian skull. Novartis Foundation Symposium, 284, 164–185; discussion 185–190.Google Scholar
  37. Hallgrímsson, B., Willmore, K., Dorval, C., & Cooper, D. M. (2004b). Craniofacial variability and modularity in macaques and mice. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 302(3), 207–225.PubMedGoogle Scholar
  38. Hallgrímsson, B., Willmore, K., & Hall, B. K. (2002). Canalization, developmental stability, and morphological integration in primate limbs. Yearbook of Physical Anthropology, 45, 131–158.Google Scholar
  39. Hansen, T. F., & Houle, D. (2008). Measuring and comparing evolvability and constraint in multivariate characters. Journal of Evolutionary Biology, 21, 1201–1219.PubMedGoogle Scholar
  40. Hansen, T., Pélabon, C., & Armbruster, W. (2007). Comparing variational properties of homologous floral and vegetative characters in Dalechampia scandens: Testing the berg hypothesis. Evolutionary Biology, 34(1), 86–98.Google Scholar
  41. Hendrikse, J. L., Parsons, T. E., & Hallgrímsson, B. (2007). Evolvability as the proper focus of evolutionary developmental biology. Evolution and Development, 9(4), 393–401.PubMedGoogle Scholar
  42. Hinchliffe, J. R., & Johnson, D. R. (1980). The development of the vertebrate limb. New York and London: Oxford University Press.Google Scholar
  43. Hu, D., & Marcucio, R. S. (2009a). A SHH-responsive signaling center in the forebrain regulates craniofacial morphogenesis via the facial ectoderm. Development, 136(1), 107–116.PubMedGoogle Scholar
  44. Hu, D., & Marcucio, R. S. (2009b). Unique organization of the frontonasal ectodermal zone in birds and mammals. Developmental Biology, 325(1), 200–210.PubMedGoogle Scholar
  45. Hu, D., Marcucio, R. S., & Helms, J. A. (2003). A zone of frontonasal ectoderm regulates patterning and growth in the face. Development, 130(9), 1749–1758.PubMedGoogle Scholar
  46. Jamniczky, H. A., & Hallgrímsson, B. (2009). A comparison of covariance structure in wild and laboratory muroid crania. Evolution, 63(6), 1540–1556.PubMedGoogle Scholar
  47. Jones, A. G., Arnold, S. J., & Burger, R. (2007). The mutation matrix and the evolution of evolvability. Evolution: International Journal of Organic Evolution, 61(4), 727–745.Google Scholar
  48. Juriloff, D. M., Harris, M. J., & Brown, C. J. (2001). Unravelling the complex genetics of cleft lip in the mouse model. Mammalian Genome, 12(6), 426–435.PubMedGoogle Scholar
  49. Juriloff, D. M., Harris, M. J., McMahon, A. P., Carroll, T. J., & Lidral, A. C. (2006). Wnt9b is the mutated gene involved in multifacial nonsyndromic cleft lip with or without cleft palate in A/WySn mice, as confirmed by a genetic complementation test. Birth Defects Research (Part A): Clinical and Molecular Teratology, 76, 574–579.Google Scholar
  50. Kawauchi, S., Calof, A. L., Santos, R., Lopez-Burks, M. E., Young, C. M., Hoang, M. P., et al. (2009). Multiple organ system defects and transcriptional dysregulation in the Nipbl(±) mouse, a model of Cornelia de Lange Syndrome. PLoS Genetics, 5(9), e1000650.PubMedGoogle Scholar
  51. Kember, N. F. (1993). Cell kinetics and the control of bone growth. Acta Paediatrica, 82(Suppl 391):61–65.Google Scholar
  52. Kirkwood, J., & Kember, N. (1993). Comparative quantitative histology of mammalian growth plates. Journal of Zoology, 231, 543–562.Google Scholar
  53. Klingenberg, C. P. (2008). Morphological integration and developmental modularity. Annual Review of Ecology and Systematics, 39, 115–132.Google Scholar
  54. Klingenberg, C. P. (2009). Morphometric integration and modularity in configurations of landmarks: Tools for evaluating a priori hypotheses. Evolution & Development, 11(4), 405–421.Google Scholar
  55. Klingenberg, C. P., & Nijhout, H. F. (1999). Genetics of fluctuating asymmetry: A developmental model of developmental instability. Evolution, 53(2), 358–375.Google Scholar
  56. Kristensen, E., Parsons, T. E., Hallgrímsson, B., & Boyd, S. K. (2008). A novel 3-D image-based morphological method for phenotypic analysis. IEEE Transactions on Biomedical Engineering, 55(12), 2826–2831.PubMedGoogle Scholar
  57. Lieberman, D. E., Hallgrímsson, B., Liu, W., Parsons, T. E., & Jamniczky, H. A. (2008). Spatial packing, cranial base angulation, and craniofacial shape variation in the mammalian skull: Testing a new model using mice. Journal of Anatomy, 212(6), 720–735.PubMedGoogle Scholar
  58. Lieberman, D. E., McBratney, B. M., & Krovitz, G. (2002). The evolution and development of cranial form in Homo Sapiens. PNAS, 99(3), 1134–1139.PubMedGoogle Scholar
  59. Lieberman, D. E., Pearson, O. M., & Mowbray, K. M. (2000). Basicranial influence on overall cranial shape. Journal of Human Evolution, 38(2), 291–315.PubMedGoogle Scholar
  60. Love, A. (2006). Evolutionary morphology and Evo-devo: Hierarchy and novelty. Theory in Biosciences, 124(3), 317–333.PubMedGoogle Scholar
  61. Maeda, Y., Nakamura, E., Nguyen, M. T., Suva, L. J., Swain, F. L., Razzaque, M. S., et al. (2007). Indian Hedgehog produced by postnatal chondrocytes is essential for maintaining a growth plate and trabecular bone. Proceedings of the National Academy of Sciences of the United States of America, 104(15), 6382–6387.PubMedGoogle Scholar
  62. Magwene, P. M. (2001). New tools for studying integration and modularity. Evolution, 55(9), 1734–1745.PubMedGoogle Scholar
  63. Marcucio, R. S., Cordero, D. R., Hu, D., & Helms, J. A. (2005). Molecular interactions coordinating the development of the forebrain and face. Developmental Biology, 284(1), 48–61.PubMedGoogle Scholar
  64. Marroig, G., & Cheverud, J. M. (2001). A comparison of phenotypic variation and covariation patterns and the role of phylogeny, ecology, and ontogeny during cranial evolution of new world monkeys. Evolution, 55(12), 2576–2600.PubMedGoogle Scholar
  65. Martínez-Abadías, N., Esparza, M., Sjøvold, T., González-José, R., Santos, M., & Hernández, M. (2009). Heritability of human cranial dimensions: Comparing the evolvability of different cranial regions. Journal of Anatomy, 214, 19–35.PubMedGoogle Scholar
  66. Mitteroecker, P. (2009). The developmental basis of variational modularity: Insights from quantitative genetics, morphometrics, and developmental biology. Evolutionary Biology. doi: 10.1007/s11692-009-9075-6.
  67. Mitteroecker, P., & Bookstein, F. (2007). The conceptual and statistical relationship between modularity and morphological integration. Systematic Biology, 56(5), 818–836.PubMedGoogle Scholar
  68. Monteiro, L. R., Bonato, V., & Dos Reis, S. F. (2005). Evolutionary integration and morphological diversification in complex morphological structures: Mandible shape divergence in spiny rats (Rodentia, Echimyidae). Evolution & Development, 7(5), 429–439.Google Scholar
  69. Müller, G. B., & Newman, S. A. (2005). The innovation triad: An EvoDevo agenda. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 304(6), 487–503.PubMedGoogle Scholar
  70. Muller, G. B., & Wagner, G. P. (1996). Homology, Hox genes, and developmental integration. American Zoologist, 36, 4–13.Google Scholar
  71. Olson, E. C., & Miller, R. A. (1958). Morphological integration. Chicago: University of Chicago Press.Google Scholar
  72. Parsons, T. E., Kristensen, E., Hornung, L., Diewert, V. M., Boyd, S. K., German, R. Z., et al. (2008). Phenotypic variability and craniofacial dysmorphology: Increased shape variance in a mouse model for cleft lip. Journal of Anatomy, 212(2), 135–143.PubMedGoogle Scholar
  73. Pavlicev, M., Cheverud, J., & Wagner, G. P. (2009). Measuring morphological integration using eigenvalue variance. Evolutionary Biology, 36, 157–170.Google Scholar
  74. Petersson, S., Persson, A. S., Johansen, J. E., Ingvar, M., Nilsson, J., Klement, G., et al. (2003). Truncation of the Shaker-like voltage-gated potassium channel, Kv1.1, causes megencephaly. European Journal of Neuroscience, 18(12), 3231–3240.PubMedGoogle Scholar
  75. Petersson, S., Sandberg Nordqvist, A., Schalling, M., & Lavebratt, C. (1999). The megencephaly mouse has disturbances in the insulin-like growth factor (IGF) system. Brain Research. Molecular Brain Research, 72(1), 80–88.PubMedGoogle Scholar
  76. Porto, A., de Oliveira, F., Shirai, L., De Conto, V., & Marroig, G. (2009). The evolution of modularity in the mammalian skull I: Morphological integration patterns and magnitudes. Evolutionary Biology, 36(1), 118–135.Google Scholar
  77. Raff, R. A. (1996). The shape of life. Chicago: The University of Chicago Press.Google Scholar
  78. Raff, R. A., & Kaufman, T. C. (1983). Embryos, genes, and evolution. New York: MacMillan Publishers.Google Scholar
  79. Raff, R. A., & Sly, B. J. (2000). Modularity and dissociation in the evolution of gene expression territories in development. Evolution & Development, 2(2), 102–113.Google Scholar
  80. Richtsmeier, J. T., Aldridge, K., DeLeon, V. B., Panchal, J., Kane, A. A., Marsh, J. L., et al. (2006). Phenotypic integration of neurocranium and brain. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 306(4), 360–378.PubMedGoogle Scholar
  81. Richtsmeier, J. T., & Deleon, V. B. (2009). Morphological integration of the skull in craniofacial anomalies. Orthodontics & Craniofacial Research, 12(3), 149–158.Google Scholar
  82. Rohlf, F. J., & Slice, D. E. (1990). Extensions of the Procrustes method for the optical superimposition of landmarks. Systematic Zoology, 39(1), 40–59.Google Scholar
  83. Rolian, C. (2008). Developmental basis of limb length in rodents: Evidence for multiple divisions of labor in mechanisms of endochondral bone growth. Evolution & Development, 10(1), 15–28.Google Scholar
  84. Rolian, C. (2009). Integration and evolvability in primate hands and feet. Evolutionary Biology, 36(1), 100–117.Google Scholar
  85. Roseman, C., Kenny-Hunt, J., & Cheverud, J. (2009). Phenotypic integration without modularity: Testing hypotheses about the distribution of pleiotropic quantitative trait loci in a continuous space. Evolutionary Biology, 36(3), 282–291.Google Scholar
  86. Ruvinsky, I., & Gibson-Brown, J. J. (2000). Genetic and developmental bases of serial homology in vertebrate limb evolution. Development, 127(24), 5233–5244.PubMedGoogle Scholar
  87. Savendahl, L. (2005). Hormonal regulation of growth plate cartilage. Hormone Research, 64(Suppl 2), 94–97.PubMedGoogle Scholar
  88. Scharloo, W. (1964). Mutant expression and canalization. Nature, 203, 1095–1096.PubMedGoogle Scholar
  89. Scharloo, W. (1991). Canalization: Genetic and developmental aspects. Annual Review of Ecology and Systematics, 22, 65–93.Google Scholar
  90. Schlosser, G., & Wagner, G. P. (2003). Introduction: The modularity concept in developmental and evolutionary biology. In G. Schlosser & G. P. Wagner (Eds.), Modularity in development and evolution (pp. 1–11). Chicago and London: The University of Chicago Press.Google Scholar
  91. Schmidt, M., & Fischer, M. S. (2009). Morphological integration in mammalian limb proportions: Dissociation between function and development. Evolution, 63(3), 749–766.PubMedGoogle Scholar
  92. Sears, K. E., Behringer, R. R., Rasweiler, J. J., & Niswander, L. A. (2006). Development of bat flight: Morphologic and molecular evolution of bat wing digits. Proceedings of the National Academy of Sciences of the United States of America, 103(17), 6581–6586.PubMedGoogle Scholar
  93. Steppan, S. J. (1997). Phylogenetic analysis of phenotypic covariance structure I. Contrasting results from matrix correlation and common principal component analysis. Evolution, 51, 571–586.Google Scholar
  94. Waddington, C. H. (1942). The canalisation of development and the inheritance of acquired characters. Nature, 150, 563.Google Scholar
  95. Wagner, G. P. (1989). A comparative study of morphological integration in Apis mellifera (Insecta, Hymenoptera). Z. zool. Syst. Evolut. - forsch., 28, 48–61.CrossRefGoogle Scholar
  96. Wagner, G. P. (1996). Homologues, natural kinds and the evolution of modularity. American Zoologist, 36, 36–43.Google Scholar
  97. Wagner, G. P. (2005). The developmental evolution of avian digit homology: An update. Theory in Biosciences, 124(2), 165–183.PubMedGoogle Scholar
  98. Wagner, G. P., Booth, G., & Bagheri-Chaichian, H. (1997). A population genetic theory of canalization. Evolution, 51(2), 329–347.Google Scholar
  99. Wagner, G. P., & Mezey, J. G. (2004). The role of genetic architecture constraints in the origin of variational modularity. In G. Schlosser & G. P. Wanger (Eds.), Modularity in development and evolution (pp. 338–358). Chicago and London: The University of Chicago Press.Google Scholar
  100. Wagner, G. P., Pavlicev, M., & Cheverud, J. (2007). The road to modularity. Nature Genetics, 8, 921–931.Google Scholar
  101. Wang, K.-Y., & Diewert, V. M. (1992). A morphometric analysis of craniofacial growth in cleft lip and noncleft mice. Journal of Craniofacial Genetics and Developmental Biology, 12(3), 141–154.PubMedGoogle Scholar
  102. Willmore, K. E., Leamy, L., & Hallgrímsson, B. (2006). Effects of developmental and functional interactions on mouse cranial variability through late ontogeny. Evolution and Development, 8(6), 550–567.PubMedGoogle Scholar
  103. Willmore, K. E., Young, N. M., & Richtsmeier, J. T. (2007). Phenotypic variability: Its components, measurement and underlying developmental processes. Evolutionary Biology, 34(3–4), 99–120.Google Scholar
  104. Wright, S. (1932). General, group and special size factors. Genetics, 17, 603–619.PubMedGoogle Scholar
  105. Young, N. M., Wagner, G. P., & Hallgrímsson, B. (submitted). Long legs and short arms: Development and evolvability of human limbs.Google Scholar
  106. Young, N. M., & Hallgrímsson, B. (2005). Serial homology and the evolution of mammalian limb covariation structure. Evolution, 59(12), 2691–2704.PubMedGoogle Scholar
  107. Young, N. M., Wat, S., Diewert, V. M., Browder, L. W., & Hallgrímsson, B. (2007). Comparative morphometrics of embryonic facial morphogenesis: Implications for cleft-lip etiology. The Anatomical Record (Hoboken), 290(1), 123–139.Google Scholar
  108. Zelditch, M. L., Lundrigan, B. L., & Garland, T. (2004). Developmental regulation of skull morphology. I. Ontogenetic dynamics of variance. Evolution & Development, 6(3), 194–206.Google Scholar
  109. Zelditch, M. L., Mezey, J., Sheets, H. D., Lundrigan, B. L., & Garland, T., Jr. (2006). Developmental regulation of skull morphology II: Ontogenetic dynamics of covariance. Evolution & Development, 8(1), 46–60.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Benedikt Hallgrímsson
    • 1
  • Heather Jamniczky
    • 1
  • Nathan M. Young
    • 1
  • Campbell Rolian
    • 1
  • Trish E. Parsons
    • 1
  • Julia C. Boughner
    • 1
  • Ralph S. Marcucio
    • 1
  1. 1.University of CalgaryCalgaryCanada

Personalised recommendations