Evolutionary Biology

, Volume 36, Issue 3, pp 327–335

Vagility: The Neglected Component in Historical Biogeography

ESSAY

Abstract

The conceptual gap between ecological and historical biogeography is wide, although both disciplines are concerned with explaining how distributions have been shaped. A central aim of modern historical biogeography is to use a phylogenetic framework to reconstruct the geographic history of a group in terms of dispersals and vicariant events, and a number of analytical methods have been developed to do so. To date the most popular analytical methods in historical biogeography have been parsimony-based. Such methods can be classified into two groups based on the assumptions used. The first group assumes that vicariance between two areas creates common patterns of disjunct distributions across several taxa whereas dispersals and extinctions generate clade specific patterns. The second group of methods assumes that passive vicariance and within-area speciation have a higher probability of occurrence than active dispersal events and extinction. Typically, none of these methods takes into account the ecology of the taxa in question. I discuss why these methods can be potentially misleading if the ecology of the taxon is ignored. In particular, the vagility or dispersal ability of taxa plays a pivotal role in shaping the distributions and modes of speciation. I argue that the vagility of taxa should be explicitly incorporated in biogeographic analyses. Likelihood-based methods with models in which more realistic probabilities of dispersal and modes of speciation can be specified are arguably the way ahead. Although objective quantification will pose a challenge, the complete ignorance of this vital aspect, as has been done in many historical biogeographic analyses, can be dangerous. I use worked examples to show a simple way of utilizing such information, but better methods need to be developed to more effectively use ecological knowledge in historical biogeography.

Keywords

DIVA Vicariance Dispersal Area cladogram Vagility Historical biogeography 

References

  1. Ali, J. R., & Aitchison, J. C. (2008). Gondwana to Asia: Plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the middle Jurassic through latest Eocene (166–35 Ma). Earth-Science Reviews, 88, 145–166.CrossRefGoogle Scholar
  2. Bossuyt, F., & Milinkovitch, M. C. (2001). Amphibians as indicators of early tertiary “out-of-India” dispersal of vertebrates. Science, 292(5514), 93–95.PubMedCrossRefGoogle Scholar
  3. Braby, M. F., Trueman, J. W. H., & Eastwood, R. (2005). When and where did troidine butterflies (Lepidoptera: Papilionidae) evolve? Phylogenetic and biogeographic evidence suggests an origin in remnant Gondwana in the late cretaceous. Invertebrate Systematics, 19, 113–143.CrossRefGoogle Scholar
  4. Bremer, K. (1992). Ancestral areas: A cladistic reinterpretation of the centre of origin concept. Systematic Biology, 41(4), 436–445.Google Scholar
  5. Briggs, J. C. (2003). The biogeographic and tectonic history of India. Journal of Biogeography, 30, 381–388.CrossRefGoogle Scholar
  6. Brooks, D. R. (1990). Parsimony analysis in historical biogeography and coevolution: Methodological and theoretical update. Systematic Zoology, 39, 14–30.CrossRefGoogle Scholar
  7. Brooks, D. R., van Veller, M. G. P., & McLennan, D. A. (2001). How to do BPA, really. Journal of Biogeography, 28, 345–358.CrossRefGoogle Scholar
  8. Brown, R. F., & Guttman, S. I. (2002). Phylogenetic systematics of the Rana signata complex of Philippine and Bornean stream frogs: Reconsideration of Huxley’s modification of Wallace’s line at the oriental–Australian faunal zone interface. Biological Journal of the Linnean Society, 76(3), 393–461.CrossRefGoogle Scholar
  9. Clark, J. R., Ree, R. H., Alfaro, M. E., King, M. G., Wagner, W. L., & Roalson, E. H. (2008). A comparative study in ancestral range reconstruction methods: Retracing the uncertain histories of insular lineages. Systematic Biology, 57(5), 693–707.PubMedCrossRefGoogle Scholar
  10. Cook, L. G., & Crisp, M. D. (2005a). Directional asymmetry of long-distance dispersal and colonization could mislead reconstructions of biogeography. Journal of Biogeography, 32(5), 741–754.CrossRefGoogle Scholar
  11. Cook, L. G., & Crisp, M. D. (2005b). Not so ancient: The extant crown group of Nothofagus represents a post-Gondwanan radiation. Proceedings of the Royal Society B: Biological Sciences, 272(1580), 2535–2544.PubMedCrossRefGoogle Scholar
  12. Cox, C. B., & Moore, P. D. (2005). Biogeography: An ecological and evolutionary approach. Oxford, UK.: Blackwell.Google Scholar
  13. Crisci, J. V. (2001). The voice of historical biogeography. Journal of Biogeography, 28(3), 157–168.CrossRefGoogle Scholar
  14. de Jong, R. (2003). Are there butterflies with Gondwanan ancestry in the Australian region? Invertebrate Systematics, 17, 143–156.CrossRefGoogle Scholar
  15. de Queiroz, A. (2005). The resurrection of oceanic dispersal in historical biogeography. Trends in Ecology and Evolution, 2(2), 68–73.CrossRefGoogle Scholar
  16. Donoghue, M. J., & Moore, B. R. (2003). Toward an integrative historical biogeography. Integrative and Comparative Biology, 43(2), 261–270.CrossRefGoogle Scholar
  17. Doyen, J., & Tschinkel, W. (1974). Population Size, microgeographic distribution and habitat separation in some Tenebrionid beetles (Coleoptera). Entomological Society of America, 4(15), 617–626.Google Scholar
  18. Evans, B. J., Brown, R. M., Mcguire, J. A., Supriatna, J., Andayani, N., Diesmos, A., Iskandar, D., Melnick, D. J., & Cannatella, D. C. (2003). Phylogenetics of fanged frogs: Testing biogeographical hypotheses at the interface of the Asian and Australian faunal zones. Systematic Biology, 52(6), 794–819.PubMedGoogle Scholar
  19. Folinsbee, K. E., & Brooks, D. R. (2007). Miocene hominoid biogeography: Pulses of dispersal and differentiation. Journal of Biogeography, 34, 383–397.CrossRefGoogle Scholar
  20. Futuyma, D. J. (1998). Evolutionary biology (p. 600). Sunderland, MA: Sinauer Associates.Google Scholar
  21. Grandcolas, P., Murienne, J., Robillard, T., Desutter-Grandcolas, L., Jourdan, H., Guilbert, E., et al. (2008). New Caledonia: a very old Darwinian island? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1508), 3309–3317.PubMedCrossRefGoogle Scholar
  22. Halas, D., Zamparo, D., & Brooks, D. R. (2005). A historical biogeographical protocol for studying biotic diversification by taxon pulses. Journal of Biogeography, 32(2), 249–260.CrossRefGoogle Scholar
  23. Holloway, J. D., & Jardine, N. (1968). Two approaches to zoogeography: A study based on the distributions of butterflies, birds and bats in the Indo-Australian area. Proceedinngs of the Linnean Society of London, 179(2), 153–188.Google Scholar
  24. ISI Web of Knowledge (2009). www.isiknowledge.com Accessed June 2009.
  25. Knapp, M., Stöckler, K., Havell, D., Delsuc, F., Sebastiani, F., & Lockhart, P. J. (2005). Relaxed molecular clock provides evidence for long-distance dispersal of Nothofagus (Southern Beech). Plos Biology, 3(1), 38–43.CrossRefGoogle Scholar
  26. Kodandaramaiah, U., & Wahlberg, N. (2007). Out-of-Africa origin and dispersal mediated diversification of the butterfly genus Junonia (Nymphalidae: Nymphalinae). Journal of Evolutionary Biology, 20(6), 2181–2191.PubMedCrossRefGoogle Scholar
  27. Larsen, T. B. (2005). Butterflies of west Africa (p. 900). Stenstrup, Denmark: Apollo Books.Google Scholar
  28. Lieberman, B. S. (2000). Paleobiogeography. New York, USA: Plenum/Kluwer Academic.Google Scholar
  29. Lieberman, B. (2003). Unifying theory and methodology in biogeography. Evolutionary Biology, 33, 1–25.Google Scholar
  30. Lomolino, M. V. (1983). Mammalian island biogeography: Effects of area, isolation and vagility. Oecologia, 61(3), 1432–1939.Google Scholar
  31. Lomolino, M. V., Riddle, B. R., & Brown, J. H. (2006). Biogeography. Sunderland: Sinauer Associates.Google Scholar
  32. Mayr, E. (1942). Systematics and the origin of species. New York, USA: Columbia University Press.Google Scholar
  33. McDowall, R. M. (2002). Accumulating evidence for a dispersal biogeography of southern cool temperate freshwater fishes. Journal of Biogeography, 29, 207–219.CrossRefGoogle Scholar
  34. McLoughlin, S. (2001). The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Australian Journal of Botany, 49, 271–300.CrossRefGoogle Scholar
  35. Morrone, J. J., & Crisci, J. V. (1995). Historical biogeography: Introduction to methods. Annual Review of Ecology and Systematics, 26, 373–401.CrossRefGoogle Scholar
  36. Nazari, V., Zakharov, E. V., & Sperling, F. A. H. (2007). Phylogeny, historical biogeography, and taxonomic ranking of Parnassiinae (Lepidoptera, Papilionidae) based on morphology and seven genes. Molecular Phylogenetics and Evolution, 42(1), 131–156.PubMedCrossRefGoogle Scholar
  37. Nelson, G. (1969). The problem of historical biogeography. Systematic Zoology, 18, 243–246.CrossRefGoogle Scholar
  38. Nelson, G., & Ladiges, P. Y. (1991). Three-area statements: Standard assumptions for biogeographic analysis. Systematic Zoology, 40, 470–485.CrossRefGoogle Scholar
  39. Nelson, G., & Platnick, N. I. (1981). Systematics and biogeography: Cladistics and vicariance. New York, USA: Columbia University Press.Google Scholar
  40. Page, R. D. M. (1988). Quantitative cladistic biogeography: Constructing and comparing area cladograms. Systematic Zoology, 37, 254–270.CrossRefGoogle Scholar
  41. Page, R. D. M. (1993). Genes, organisms, and areas: The problem of multiple lineages. Systematic Biology, 42(1), 77–84.Google Scholar
  42. Parsons, M. (1998). The butterflies of Papua New Guinea: Their systematics and biology. London: Academic Press. 736 + 136 Plates p.Google Scholar
  43. Platnick, N. I., & Nelson, G. (1978). A method of analysis historical biogeography. Systematic Zoology, 27, 1–16.CrossRefGoogle Scholar
  44. Posadasa, P., Crisci, J. V., & Katinas, L. (2006). Historical biogeography: A review of its basic concepts and critical issues. Journal of Arid Environments, 66(3), 389–403.CrossRefGoogle Scholar
  45. Raxworthy, C. J., Forstner, M. R. J., & Nussbaum, R. A. (2002). Chameleon radiation by oceanic dispersal. Nature, 415(6873), 784–787.PubMedGoogle Scholar
  46. Ree, R. H., Moore, B. R., Webb, C. O., & Donoghue, M. J. (2005). A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution, 59(11), 2299–2311.PubMedGoogle Scholar
  47. Ree, R. H., & Smith, S. A. (2008). Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology, 57(1), 4–14.PubMedCrossRefGoogle Scholar
  48. Renner, S. S. (2004). Multiple Miocene Melastomataceae dispersal between Madagascar, Africa and India. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 359(1450), 1485–1494.PubMedCrossRefGoogle Scholar
  49. Richardson, J. E., Chatrou, L. W., Mols, J. B., Erkens, R. H., & Pirie, M. D. (2004). Historical biogeography of two cosmopolitan families of flowering plants: Annonaceae and Rhamnaceae. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 359(1450), 1495–1508.PubMedCrossRefGoogle Scholar
  50. Riddle, B. R., Dawson, M. N., Hadly, E. A., Hafner, D. J., Hickerson, M. J., Mantooth, S. J., et al. (2008). The role of molecular genetics in sculpting the future of integrative biogeography. Progress in Physical Geography, 32(2), 173–202.CrossRefGoogle Scholar
  51. Ronquist, F. (1996). DIVA version 1.1. Computer program and manual available by anonymous FTP from Uppsala University (ftp.uu.se or ftp.systbot.uu.se). Sweden: Uppsala.Google Scholar
  52. Ronquist, F. (1997). Dispersal-vicariance analysis: A new approach to the quantification of historical biogeography. Systematic Biology, 46, 195–203.Google Scholar
  53. Rosen, D. E. (1978). Vicariant patterns and historical explanation in biogeography. Systematic Zoology, 27, 159–188.CrossRefGoogle Scholar
  54. Sanmartín, I., Mark, Pvd., & Ronquist, F. (2008). Inferring dispersal: A Bayesian approach to phylogeny-based island biogeography, with special reference to the Canary Islands. Journal of Biogeography, 35(3), 428–449.CrossRefGoogle Scholar
  55. Shine, R. (1987). Reproductive mode may determine geographic distributions in Australian venomous snakes (Pseudechis, Elapidae). Oecologia, 71(4), 1432–1939.CrossRefGoogle Scholar
  56. Trejo-Torres, J. C., & Ackerman, J. D. (2001). Biogeography of the Antilles based on a parsimony analysis of orchid distributions. Journal of Biogeography, 28(6), 775–794.CrossRefGoogle Scholar
  57. Trénel, P., Gustafssona, M. H. G., Bakerb, W. J., Asmussen-Langec, C. B., Dransfieldb, J., & Borchsenius, F. (2007). Mid-tertiary dispersal, not Gondwanan vicariance explains distribution patterns in the wax palm subfamily (Ceroxyloideae: Arecaceae). Molecular Phylogenetics and Evolution, 45(1), 272–288.PubMedCrossRefGoogle Scholar
  58. van Veller, M. G. P., Brooks, D. R., & Zandee, M. (2003). Cladistic and phylogenetic biogeography: The art and the science of discovery. Journal of Biogeography, 30(3), 319–329.CrossRefGoogle Scholar
  59. van Veller, M. G. P., Kornet, D. J., & Zandee, M. (2002). A posteriori and a priori methodologies for testing hypotheses of causal processes in Vicariance biogeography. Cladistics, 18(2), 207–217.CrossRefGoogle Scholar
  60. Van Veller, M. G. P., Zandee, M., & Kornet, D. J. (1999). Two requirements for obtaining valid common patterns under different assumptions in vicariance biogeography. Cladistics, 15(4), 393–406.CrossRefGoogle Scholar
  61. Vences, M., Vieites, D. R., Glaw, F., Brinkmann, H., Kosuch, J., Veith, M., et al. (2003). Multiple overseas dispersal in amphibians. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 270(1532), 2435–2442.Google Scholar
  62. Von Bocxlaer, I. V., Roelants, K., Biju, S. D., Nagaraju, J., & Bossuyt, F. (2006). Late Cretaceous vicariance in Gondwanan amphibians. PLos One, 1, e74.PubMedCrossRefGoogle Scholar
  63. Wiens, J. J., & Donoghue, M. J. (2004). Historical biogeography, ecology and species richness. Trends in Ecology and Evolution, 19(12), 639–644.PubMedCrossRefGoogle Scholar
  64. Wojcicki, M., & Brooks, D. R. (2005). PACT: An efficient and powerful algorithm for generating area cladograms. Journal of Biogeography, 32(5), 755–774.CrossRefGoogle Scholar
  65. Yoder, A. D., & Nowak, M. D. (2006). Has vicariance or dispersal been the predominant biogeographic force in Madagascar? Only time will tell. Annual Review of Ecology and Systematics, 37, 405–431.CrossRefGoogle Scholar
  66. Zakharov, E. V., Caterino, M. S., & Sperling, F. A. H. (2004). Molecular phylogeny, historical biogeography and divergence time estimates for swallowtail butterflies of the genus Papilio (Lepidoptera: Papilionidae). Systematic Biology, 53(1), 193–215.PubMedCrossRefGoogle Scholar
  67. Zandee, M., & Roos, M. C. (1987). Component-compatibility in historical biogeography. Cladistics, 3, 305–332.Google Scholar
  68. Zeuner, F. E. (1943). Studies in the systematics of Troides Hübner (Lepidoptera, Papilionidae) and its allies: Distribution and phylogeny in relation to the geological history of the Australian archipelago. Transactions of the Zoological Society of London, 25, 107–184.Google Scholar
  69. Zink, R. M., Blackwell-Rago, R. C., & Ronquist, F. (2000). The shifting roles of dispersal and vicariance in biogeography. Proceedings of the Royal Society Biological Sciences Series B, 267(1442), 497–503.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of ZoologyStockholm UniversityStockholmSweden

Personalised recommendations