Evolutionary Biology

, Volume 36, Issue 1, pp 19–36 | Cite as

Comparison of Mandibular Phenotypic and Genetic Integration between Baboon and Mouse

  • Katherine E. Willmore
  • Charles C. Roseman
  • Jeffrey Rogers
  • James M. Cheverud
  • Joan T. Richtsmeier
Research Article

Abstract

In this study we compare patterns of mandibular integration between mice and baboons using both phenotypic and quantitative genetic data. Specifically, we test how well each species fits with the mosaic model of mandibular integration suggested by Atchley and Hall (Biol Rev Camb Philos Soc 66:101–157, 1991) based on developmental modules. We hypothesize that patterns of integration will be similar for mice and baboons and that both species will show strong integration within developmental modules and weaker integration between modules. Corresponding landmark data were collected from the hemi-mandibles of an advanced intercross mouse sample (N = 1239) and mandibles from a baboon sample of known pedigree from the Southwest Foundation for Biomedical Research (N = 430). We used four methods of analysis to quantify and compare the degree of mandibular integration between species including two methods based on a priori assumptions, and two a posteriori analyses. We found that patterns of integration are broadly similar for baboon and mouse mandibles, with both species displaying a modular pattern of integration. While there is a general trend of similarity in integration patterns between species, there were some marked differences. Mice are strongly correlated among distances within the coronoid process and the incisive alveolar region, whereas baboons are strongly integrated within the condylar process. We discuss the potential evolutionary implications of the similar patterns of integration between these species with an emphasis on the role of modularity.

Keywords

Integration Mandible Mammalian Modularity 

Supplementary material

11692_2009_9056_MOESM1_ESM.docx (29 kb)
Supplementary material 1 (DOCX 28 kb)

References

  1. Ackermann, R. R. (2005). Ontogenetic integration of the hominoid face. Journal of Human Evolution, 48, 175–197. doi:10.1016/j.jhevol.2004.11.001.PubMedCrossRefGoogle Scholar
  2. Ackermann, R. R., & Cheverud, J. M. (2000). Phenotypic covariance structure in tamarins (genus: Saguinus): A comparison of variation patterns using matrix correlation and common principal component analysis. American Journal of Physical Anthropology, 111, 489–501. doi:10.1002/(SICI)1096-8644(200004)111:4<489::AID-AJPA5>3.0.CO;2-U.PubMedCrossRefGoogle Scholar
  3. Almasy, L., & Blangero, J. (1998). Multipoint quantitative-trait linkage analysis in general pedigrees. American Journal of Human Genetics, 62, 1198–1211. doi:10.1086/301844.PubMedCrossRefGoogle Scholar
  4. Atchley, W. R., & Hall, B. K. (1991). A model for development and evolution of complex morphological structures. Biological Reviews of the Cambridge Philosophical Society, 66, 101–157. doi:10.1111/j.1469-185X.1991.tb01138.x.PubMedCrossRefGoogle Scholar
  5. Atchley, W. R., Plummer, A. A., & Riska, B. (1985). Genetics of mandible form in the mouse. Genetics, 111, 555–577.PubMedGoogle Scholar
  6. Beecher, R. M. (1979). Functional significance of mandibular symphysis. Journal of Morphology, 159, 117–130. doi:10.1002/jmor.1051590109.PubMedCrossRefGoogle Scholar
  7. Berg, R. L. (1960). The ecological significance of correlational pleiades. Evolution; International Journal of Organic Evolution, 14, 171–180. doi:10.2307/2405824.Google Scholar
  8. Cheverud, J. M. (1982). Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution; International Journal of Organic Evolution, 36, 499–516. doi:10.2307/2408096.Google Scholar
  9. Cheverud, J. M. (1989). A comparative analysis of morphological variation patterns in the papionins. Evolution; International Journal of Organic Evolution, 43, 1737–1747. doi:10.2307/2409389.Google Scholar
  10. Cheverud, J. M. (1995). Morphological integration in the saddle-back tamarin (Saguinus fuscicollis) cranium. American Naturalist, 145, 63–89. doi:10.1086/285728.CrossRefGoogle Scholar
  11. Cheverud, J. M. (1996). Quantitative genetic analysis of cranial morphology in the cotton-top (Saguinus oedipus) and saddle-back (S. fuscicollis) tamarins. Journal of Evolutionary Biology, 9, 5–42. doi:10.1046/j.1420-9101.1996.9010005.x.CrossRefGoogle Scholar
  12. Cheverud, J. M. (2004). Modular pleiotropic effects of quantitative trait loci on morphological traits. In G. Schlosser & G. P. Wagner (Eds.), Modularity in development and evolution (pp. 132–153). Chicago: University of Chicago Press.Google Scholar
  13. Cheverud, J. M., Hartman, S. E., Richtsmeier, J. T., & Atchley, W. R. (1991). A quantitative genetic analysis of localized morphology in mandibles of inbred mice using finite element scaling. Journal of Craniofacial Genetics and Developmental Biology, 11, 122–137.PubMedGoogle Scholar
  14. Cheverud, J. M., Routman, E. J., & Irschick, D. J. (1997). Pleiotropic effects of individual gene loci on mandibular morphology. Evolution; International Journal of Organic Evolution, 51, 2006–2016. doi:10.2307/2411021.Google Scholar
  15. Cheverud, J. M., Wagner, G. P., & Dow, M. M. (1989). Methods for the comparative analysis of variation patterns. Systematic Zoology, 38, 201–213. doi:10.2307/2992282.CrossRefGoogle Scholar
  16. Cole, T. M, I. I. I. (2002). MIBoot: Software for bootstrap comparison of morphological integration patterns. Kansas City: University of Missouri––Kansas City School of Medicine.Google Scholar
  17. Cole, T. M., III & Lele, S. (2002). Bootstrap-based methods for comparing morphological integration patterns. American Journal of Physical Anthropology (Supplement 34), 55 (Abstract).Google Scholar
  18. Council, N. R. (1996). Guide for the care and use of laboratory animals. Washington, DC: National Academy of Sciences.Google Scholar
  19. Darvasi, A., & Soller, M. (1995). Advanced intercross lines, an experimental population for fine genetic mapping. Genetics, 141, 1199–1207.PubMedGoogle Scholar
  20. Ehrich, T. H., Kenney-Hunt, J., Pletscher, S., & Cheverud, J. M. (2005). Genetic variation and correlation of dietary response in an advanced intercross mouse line produced from two divergent growth lines. Genetical Research Cambridge, 85, 211–222.CrossRefGoogle Scholar
  21. Ehrich, T. H., Vaughn, T. T., Koreishi, S. F., Linsey, R. B., Pletscher, L. S., & Cheverud, J. M. (2003). Pleiotropic effects on mandibular morphology I. Developmental morphological integration and differential dominance. The Journal of Experimental Zoology, 296B, 58–79 (Molecular and Developmental Evolution) doi:10.1002/jez.b.9.Google Scholar
  22. Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (4th Ed.). London, UK: Pearson Prentice Hall.Google Scholar
  23. Gass, G. L., & Bolker, J. A. (2002). Modularity. In W. Olson (Ed.), Keywords and concepts in evolutionary developmental biology. Cambridge: Harvard University Press.Google Scholar
  24. González-José, R., Van Der Molen, S., González-Pérez, S., & Hernández, M. (2004). Patterns of phenotypic covariation and correlation in modern humans as viewed from morphological integration. American Journal of Physical Anthropology, 123, 69–77. doi:10.1002/ajpa.10302.PubMedCrossRefGoogle Scholar
  25. Goodale, H. (1938). A study of the inheritance of body weight in the albino mouse by selection. The Journal of Heredity, 29, 101–112.Google Scholar
  26. Goodale, H. (1941). Progress report on possibilities in progeny test breeding. Science, 94, 442–443. doi:10.1126/science.94.2445.442.PubMedCrossRefGoogle Scholar
  27. Goswami, A. (2006). Cranial modularity shifts during mammalian evolution. American Naturalist, 168, 270–280. doi:10.1086/505758.PubMedCrossRefGoogle Scholar
  28. Hallgrímsson, B., Willmore, K., Dorval, C., & Cooper, D. M. L. (2004). Craniofacial variability and modularity in macaques and mice. The Journal of Experimental Zoology, 302B, 207–225. Molecular and Developmental Evolution. doi:10.1002/jez.b.21002.Google Scholar
  29. Hylander, W. L. (1979a). Mandibular function in Galago crassicaudatus and Macaca fascicularis: An in vivo approach to stress analysis of the mandible. Journal of Morphology, 159, 253–296. doi:10.1002/jmor.1051590208.PubMedCrossRefGoogle Scholar
  30. Hylander, W. L. (1979b). The functional significance of primate mandibular form. Journal of Morphology, 160, 223–240. doi:10.1002/jmor.1051600208.PubMedCrossRefGoogle Scholar
  31. Klingenberg, C. P., Leamy, L. J., & Cheverud, J. M. (2004). Integration and modularity of quantitative trait locus effects on geometric shape in the mouse mandible. Genetics, 166, 1909–1921. doi:10.1534/genetics.166.4.1909.PubMedCrossRefGoogle Scholar
  32. Klingenberg, C. P., Mebus, K., & Auffray, J. C. (2003). Developmental integration in a complex morphological structure: How distinct are the modules in the mouse mandible. Evolution & Development, 5, 522–531. doi:10.1046/j.1525-142X.2003.03057.x.CrossRefGoogle Scholar
  33. Langille, R. M., & Hall, B. K. (1989). Developmental processes, developmental sequences and early vertebrate phylogeny. Biological Reviews of the Cambridge Philosophical Society, 64, 73–91. doi:10.1111/j.1469-185X.1989.tb00672.x.PubMedCrossRefGoogle Scholar
  34. Leamy, L. J. (1993). Morphological integration of fluctuating asymmetry in the mouse mandible. Genetica, 89, 139–153. doi:10.1007/BF02424510.CrossRefGoogle Scholar
  35. Lessells, C. M., & Boag, P. T. (1987). Unrepeatable repeatabilities: A common mistake. The Auk, 104, 116–121.Google Scholar
  36. MacArthur, J. (1944). Genetics of body size and related characters. I. Selection of small and large races of the laboratory mouse. American Naturalist, 78, 142–157. doi:10.1086/281181.CrossRefGoogle Scholar
  37. Magwene, P. M. (2001). New tools for studying integration and modularity. Evolution; International Journal of Organic Evolution, 55, 1734–1745.PubMedGoogle Scholar
  38. Marroig, G., & Cheverud, J. M. (2001). A comparison of phenotypic variation and covariation patterns and the role of phylogeny, ecology, and ontogeny during cranial evolution of new world monkeys. Evolution; International Journal of Organic Evolution, 55, 2576–2600.PubMedGoogle Scholar
  39. Mezey, J. G., Cheverud, J. M., & Wagner, G. P. (2000). Is the genotype-phenotype map modular? A statistical approach using mouse quantitative trait loci data. Genetics, 156, 305–311.PubMedGoogle Scholar
  40. Mitteroeker, P., & Bookstein, F. (2008). The evolutionary role of modularity and integration in the hominoid cranium. Evolution; International Journal of Organic Evolution, 62, 943–958. doi:10.1111/j.1558-5646.2008.00321.x.Google Scholar
  41. Needham, J. (1933). On the dissociability of the fundamental processes in ontogenesis. Biological Reviews of the Cambridge Philosophical Society, 8, 180–223. doi:10.1111/j.1469-185X.1933.tb01153.x.CrossRefGoogle Scholar
  42. Norgard, E. A., Roseman, C. C., Fawcett, G. L., Pavlicev, M., Morgan, C. D., Pletscher, L. S., et al. (2008). Identification of quantitative trait loci affecting murine long bone length in a two-generation intercross of LG/J and SM/J mice. Journal of Bone and Mineral Research, 23, 887–895. doi:10.1359/jbmr.080210.PubMedCrossRefGoogle Scholar
  43. Olson, E. C., & Miller, R. L. (1958). Morphological integration. Chicago: University of Chicago Press.Google Scholar
  44. Pavlicev, M., Cheverud, J. M., & Wagner, G. P. (2009). Measuring morphological integration using eigenvalue variance. in press: Evolutionary Biology.Google Scholar
  45. Ramaesh, T., & Bard, J. B. L. (2003). The growth and morphogenesis of the early mouse mandible: A quantitative analysis. Journal of Anatomy, 203, 213–222. doi:10.1046/j.1469-7580.2003.00210.x.PubMedCrossRefGoogle Scholar
  46. Richtsmeier, J. T., Aldridge, K. A., DeLeon, V. B., Panchal, J., Kane, A. A., Marsh, J. L., et al. (2006). Phenotypic integration of neurocranium and brain. Journal of Experimental Zoology (Molecular and Developmental Evolution), 306B, 1–19.CrossRefGoogle Scholar
  47. Schlosser, G., & Wagner, G. P. (2004). Introduction: The modularity concept in developmental and evolutionary biology. In G. Schlosser & G. P. Wagner (Eds.), Modularity in development and evolution (pp. 1–11). Chicago: University of Chicago Press.Google Scholar
  48. Simon, H. A. (1962). The architecture of complexity. Proceedings of the American Philosophical Society, 106, 467–482.Google Scholar
  49. Sokal, R. S., & Rohlf, F. J. (2000). Biometry. New York: H.W. Freeman.Google Scholar
  50. Trainor, P. A., & Krumlauf, R. (2001). Hox genes, neural crest cells and brachial arch patterning. Current Opinion in Cell Biology, 13, 698–705. doi:10.1016/S0955-0674(00)00273-8.PubMedCrossRefGoogle Scholar
  51. Valeri, C. J., Cole, T. M., I. I. I., Lele, S., & Richtsmeier, J. T. (1998). Capturing data from three-dimensional surfaces using fuzzy landmarks. American Journal of Physical Anthropology, 107, 113–124. doi:10.1002/(SICI)1096-8644(199809)107:1<113::AID-AJPA9>3.0.CO;2-O.PubMedCrossRefGoogle Scholar
  52. Wagner, G. P. (1984). On the eigenvalue distribution of genetic and phenotypic dispersion matrices: Evidence for a nonrandom organization of quantitative character variation. Journal of Mathematical Biology, 21, 77–95.Google Scholar
  53. Wagner, G. P. (1990). A comparative study of morphological integration in Apis mellifera (Insecta, Hymenoptera). Journal of Zoological Systematics and Evolutionary Research, 28, 48–61.Google Scholar
  54. Wagner, G. P. (1996). Homologues, natural kinds and the evolution of modularity. American Zoologist, 36, 36–43.Google Scholar
  55. Washburn, S. L. (1947). The relation of the temporal muscle to the form of the skull. The Anatomical Record, 99, 239–248. doi:10.1002/ar.1090990303.CrossRefGoogle Scholar
  56. Weijs, W. A., & deJongh, H. J. (1977). Strain in mandibular alveolar bone during mastication in the rabbit. Archives of Oral Biology, 22, 667–675. doi:10.1016/0003-9969(77)90096-6.PubMedCrossRefGoogle Scholar
  57. Wilkins, A. S. (2002). The evolution of developmental pathways. Sunderlan, MA: Sinauer.Google Scholar
  58. Willmore, K. E., Young, N. M., & Richtsmeier, J. T. (2007). Phenotypic variability: Its components, measurement and underlying developmental processes. Evolutionary Biology, 34, 99–120. doi:10.1007/s11692-007-9008-1.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Katherine E. Willmore
    • 1
  • Charles C. Roseman
    • 2
  • Jeffrey Rogers
    • 3
  • James M. Cheverud
    • 4
  • Joan T. Richtsmeier
    • 1
  1. 1.Department of AnthropologyPennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of AnthropologyUniversity of IllinoisUrbanaUSA
  3. 3.Department of GeneticsSouthwest Foundation for Biomedical ResearchSan AntonioUSA
  4. 4.Department of Anatomy and NeurobiologyWashington University Medical SchoolSt. LouisUSA

Personalised recommendations