Evolutionary Biology

, Volume 35, Issue 4, pp 296–308 | Cite as

Mandibular Shape, Ontogeny and Dental Development in Bonobos (Pan paniscus) and Chimpanzees (Pan troglodytes)

  • Julia C. BoughnerEmail author
  • M. Christopher Dean
Research Article


The postnatal ontogenetic patterns and processes that underlie species differences in African ape adult mandibular morphology are not well understood and there is ongoing debate about whether African ape faces and mandibles develop via divergent or parallel trajectories of shape change. Using three-dimensional (3D) morphometric data, we first tested when in postnatal development differences in mandibular shape are initially evident between sister species Pan troglodytes and P. paniscus. Next, we tested whether each species has a distinct and non-parallel trajectory of mandibular development. Mandibles sampled across a broad developmental range of wildshot bonobos (n = 44) and chimpanzees (n = 59) were radiographed and aged from their dental development. We then collected 3D landmark surface data from all the mandibles. A geometric morphometric analysis of size-corrected 3D data found that bonobos and chimpanzees had parallel and linear ontogenetic trajectories of mandibular shape change. In contrast, mandibular shape was statistically different between P. paniscus and P. troglodytes as early as infancy, suggesting that species shape differences are already established near or before birth. A linear and stable trajectory of shape change suggests that mandibular ontogeny in these apes is unimpacted by non-linear variation in tooth developmental timing.


African ape Bonobo Chimpanzee Mandible 3D geometric morphometrics 



We thank Nicholas Jones, Gary Schwartz, Sam Cobb, Nathan Jeffery, Kornelius Kupczik, Don Reid, William Harcourt-Smith and Wendy Dirks for ready support and helpful discussions in collecting and analyzing our data. Louise Humphrey and Paul O’Higgins offered invaluable comments on the study design and the statistical methods used here. We are indebted to the curators at the Natural History Museum, London, the Musée Royal de l’Afrique Centrale, Tervuren, the Powell-Cotton Museum, Kent, and the Royal College of Surgeons of England. This research was funded in part by The Overseas Research Students Awards Scheme and The Graduate School, UCL and by grants to MCD from The Leverhulme Trust and The Royal Society. Lastly, we thank two anonymous reviewers whose valuable comments and suggestions strengthened this paper.


  1. Ackermann, R. R., & Krovitz, G. E. (2002). Common patterns of facial ontogeny in the hominid lineage. The Anatomical Record, 269(3), 142–147. doi: 10.1002/ar.10119.PubMedCrossRefGoogle Scholar
  2. Anemone, R. L., Watts, E. S., & Swindler, D. R. (1991). Dental development of known-age chimpanzees, Pan troglodytes (Primates, Pongidae). American Journal of Physical Anthropology, 86(2), 229–241. doi: 10.1002/ajpa.1330860211.CrossRefGoogle Scholar
  3. Berge, C., & Penin, X. (2004). Ontogenetic allometry, heterochrony, and interspecific differences in the skull of African apes, using tridimensional Procrustes analysis. American Journal of Physical Anthropology, 124(2), 124–138. doi: 10.1002/ajpa.10333.PubMedCrossRefGoogle Scholar
  4. Bookstein, F. L. (1991). Morphometric tools for landmark data: Geometry and biology. Cambridge: Cambridge University Press.Google Scholar
  5. Boughner, J. C. (2002). Dental and mandibular growth in Papio and Pan. London: University College London (University of London).Google Scholar
  6. Boughner, J. C., & Dean, M. C. (2004). Does space in the jaw influence the timing of molar crown initiation? A model using baboons (Papio anubis) and great apes (Pan troglodytes, Pan paniscus). Journal of Human Evolution, 46(3), 255–277. doi: 10.1016/j.jhevol.2003.11.007.PubMedCrossRefGoogle Scholar
  7. Cobb, S. N. (2001). Form variation in the postnatal facial skeleton of the African apes. London: University of London.Google Scholar
  8. Cobb, S. N., & O’Higgins, P. (2004). Hominins do not share a common postnatal facial ontogenetic shape trajectory. Journal of Experimental Zoology. Part B. Molecular and Developmental Evolution, 302(3), 302–321.PubMedGoogle Scholar
  9. Collard, M., & O’Higgins, P. (2001). Ontogeny and homoplasy in the papionin monkey face. Evolution and Development, 3(5), 322–331. doi: 10.1046/j.1525-142X.2001.01042.x.PubMedCrossRefGoogle Scholar
  10. Creuzet, S., Couly, G., Vincent, C., & Le Douarin, N. M. (2002). Negative effect of Hox gene expression on the development of the neural crest-derived facial skeleton. Development, 129(18), 4301–4313.PubMedGoogle Scholar
  11. Daegling, D. J. (1996). Growth in the mandibles of African apes. Journal of Human Evolution, 30(4), 315–341. doi: 10.1006/jhev.1996.0026.CrossRefGoogle Scholar
  12. Daegling, D. J., & Jungers, W. L. (2000). Elliptical fourier analysis of symphyseal shape in great ape mandibles. Journal of Human Evolution, 39(1), 107–122. doi: 10.1006/jhev.2000.0402.PubMedCrossRefGoogle Scholar
  13. Dean, M. C., & Beynon, A. D. (1991). Tooth crown heights, tooth wear, sexual dimorphism and jaw growth in hominoids. Zeitschrift fur Morphologie und Anthropologie, 78(3), 425–440.PubMedGoogle Scholar
  14. Dean, M. C., & Wood, B. A. (1981). Developing pongid dentition and its use for ageing individual crania in comparative cross-sectional growth studies. Folia Primatologica, 36(1–2), 111–127. doi: 10.1159/000156011.CrossRefGoogle Scholar
  15. Dryden, I. L., & Mardia, K. V. (1998). Statistical shape analysis. London: John Wiley.Google Scholar
  16. Fenart, R., & Deblock, R. (1973). Pan paniscus et Pan troglodytes craniometrie. Tervuren, Belgique: Musée Royal de l’Afrique Centrale.Google Scholar
  17. Goodall, C. R. (1991). Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society London B, 53(2), 285–339.Google Scholar
  18. Jenkins, P. D. (1990). Catalogue of primates in the British museum (natural history) part V: The apes, superfamily Hominoidea. London: British Museum (Natural History).Google Scholar
  19. Johanson, D. C. (1974). Some metric aspects of permanent and deciduous dentition of pygmy chimpanzee (Pan paniscus). American Journal of Physical Anthropology, 41(1), 39–48. doi: 10.1002/ajpa.1330410106.CrossRefGoogle Scholar
  20. Kavanagh, K. D., Evans, A. R., & Jernvall, J. (2007). Predicting evolutionary patterns of mammalian teeth from development. Nature, 449(7161), 427–432. doi: 10.1038/nature06153.PubMedCrossRefGoogle Scholar
  21. Leigh, S. R., Shah, N. F., & Buchanan, L. S. (2003). Ontogeny and phylogeny in papionin primates. Journal of Human Evolution, 45(4), 285–316. doi: 10.1016/j.jhevol.2003.08.004.PubMedCrossRefGoogle Scholar
  22. Marcus, L. F., Corti, M., Loy, A., Naylor, G. J. P., & Slice, D. (1996). Advances in morphometrics. New York: Plenum Press.Google Scholar
  23. Mina, M., Wang, Y. H., Ivanisevic, A. M., Upholt, W. B., & Rodgers, B. (2002). Region- and stage-specific effects of FGFs and BMPs in chick mandibular morphogenesis. Developmental Dynamics, 223(3), 333–352. doi: 10.1002/dvdy.10056.PubMedCrossRefGoogle Scholar
  24. Mitteroecker, P., Gunz, P., Bernhard, M., Schaefer, K., & Bookstein, F. L. (2004). Comparison of cranial ontogenetic trajectories among great apes and humans. Journal of Human Evolution, 46(6), 679–697. doi: 10.1016/j.jhevol.2004.03.006.PubMedCrossRefGoogle Scholar
  25. Mitteroecker, P., Gunz, P., & Bookstein, F. L. (2005). Heterochrony and geometric morphometrics: A comparison of cranial growth in Pan paniscus versus Pan troglodytes. Evolution and Development, 7(3), 244–258. doi: 10.1111/j.1525-142X.2005.05027.x.PubMedCrossRefGoogle Scholar
  26. Napier, P. H. (1981). Catalogue of primates in the British museum (natural history) part II: Family Cercopithecoidea, subfamily Cercopithecinae. London: British Museum (Natural History).Google Scholar
  27. O’Higgins, P., & Jones, N. (1998). Facial growth in Cercocebus torquatus: An application of three-dimensional geometric morphometric techniques to the study of morphological variation. Journal of Anatomy, 193(Pt 2), 251–272. doi: 10.1046/j.1469-7580.1998.19320251.x.PubMedCrossRefGoogle Scholar
  28. Ramirez Rozzi, F., & Lacruz, R. S. (2007). Histological study of an upper incisor and molar of a bonobo (Pan paniscus) individual. In S. E. Bailey & J.-J. Hublin (Eds.), Dental perspectives on human evolution: State of the art research in dental paleoanthropology (p. 163). Netherlands: Springer Netherlands.CrossRefGoogle Scholar
  29. Reid, D. J., Schwartz, G. T., Dean, C., & Chandrasekera, M. S. (1998). A histological reconstruction of dental development in the common chimpanzee, Pan troglodytes. Journal of Human Evolution, 35(4–5), 427–448. doi: 10.1006/jhev.1998.0248.PubMedCrossRefGoogle Scholar
  30. Rohlf, F. J., & Slice, D. (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39(1), 40–59. doi: 10.2307/2992207.CrossRefGoogle Scholar
  31. Shea, B. T. (1983a). Allometry and heterochrony in the African apes. American Journal of Physical Anthropology, 62(3), 275–289. doi: 10.1002/ajpa.1330620307.PubMedCrossRefGoogle Scholar
  32. Shea, B. T. (1983b). Paedomorphosis and neoteny in the pygmy chimpanzee. Science, 222(4623), 521–522. doi: 10.1126/science.6623093.PubMedCrossRefGoogle Scholar
  33. Shea, B. T. (1983c). Size and diet in the evolution of African ape craniodental form. Folia Primatologica, 40(1–2), 32–68. doi: 10.1159/000156090.CrossRefGoogle Scholar
  34. Shea, B. T. (1985). An allometric perspective on the morphological and evolutionary relationships between pygmy (Pan paniscus) and common (Pan troglodytes) chimpanzees. In R. L. Susman (Ed.), The Pygmy Chimpanzee: Evolutionary biology and behaviour (pp. 89–130). New York: Plenum Press.Google Scholar
  35. Shea, B. T. (2002). Are some heterochronic transformations likelier than others? In N. Minugh-Purvis & K. J. McNamara (Eds.), Human evolution through developmental change (pp. 79–101). London: The Johns Hopkins University Press.Google Scholar
  36. Slice, D. (1993). Extensions, comparisons, and applications of superimposition methods for morphometric analysis. New York: State University of New York at Stony Brook.Google Scholar
  37. Smith, B. H., Crummet, T. L., & Brandt, K. L. (1994). Ages of eruption of primate teeth: A compendium for aging individuals and comparing life histories. Yearbook of Physical Anthropology, 37(S19), 177–231. doi: 10.1002/ajpa.1330370608.CrossRefGoogle Scholar
  38. Taylor, A. B. (2002). Masticatory form and function in the African Apes. American Journal of Physical Anthropology, 117(2), 133–156. doi: 10.1002/ajpa.10013.PubMedCrossRefGoogle Scholar
  39. Taylor, A. B., & Groves, C. P. (2003). Patterns of mandibular variation in Pan and Gorilla and implications for African ape taxonomy. Journal of Human Evolution, 44(5), 529–561. doi: 10.1016/S0047-2484(03)00027-7.PubMedCrossRefGoogle Scholar
  40. Weinberg, S. M. (2002). Nonmetric variation in the skulls of human perinates. Pittsburg: University of Pittsburg.Google Scholar
  41. Williams, F. L., Godfrey, L. R., & Sutherland, M. R. (2002). Heterochrony and the evolution of Neanderthal and modern human craniofacial form. In N. Minugh-Purvis & K. J. McNamara (Eds.), Human evolution through developmental change (pp. 405–441). Baltimore: The Johns Hopkins University Press.Google Scholar
  42. Williams, F. L., Godfrey, L., & Sutherland, M. R. (2003). Diagnosing heterochronic perturbations in the craniofacial evolution of Homo (Neanderthals and modern humans) and Pan (P. troglodytes and P. paniscus). In J. L. Thompson, G. E. Krovitz, & A. J. Nelson (Eds.), Patterns of growth and development in the genus Homo (pp. 295–319). Cambridge: Cambridge University Press.Google Scholar
  43. Zollikofer, C. P., & Ponce de Leon, M. S. (2004). Kinematics of cranial ontogeny: Heterotopy, heterochrony, and geometric morphometric analysis of growth models. Journal of Experimental Zoology. Part B. Molecular and Developmental Evolution, 302(3), 322–340.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Anatomy and Cell Biology, Faculty of MedicineUniversity of CalgaryCalgaryCanada
  2. 2.Department of Cell and Developmental BiologyUniversity College LondonLondonUK

Personalised recommendations