Evolutionary Biology

, Volume 36, Issue 1, pp 118–135 | Cite as

The Evolution of Modularity in the Mammalian Skull I: Morphological Integration Patterns and Magnitudes

  • Arthur Porto
  • Felipe B. de Oliveira
  • Leila T. Shirai
  • Valderes De Conto
  • Gabriel Marroig
Research Article

Abstract

Morphological integration refers to the modular structuring of inter-trait relationships in an organism, which could bias the direction and rate of morphological change, either constraining or facilitating evolution along certain dimensions of the morphospace. Therefore, the description of patterns and magnitudes of morphological integration and the analysis of their evolutionary consequences are central to understand the evolution of complex traits. Here we analyze morphological integration in the skull of several mammalian orders, addressing the following questions: are there common patterns of inter-trait relationships? Are these patterns compatible with hypotheses based on shared development and function? Do morphological integration patterns and magnitudes vary in the same way across groups? We digitized more than 3,500 specimens spanning 15 mammalian orders, estimated the correspondent pooled within-group correlation and variance/covariance matrices for 35 skull traits and compared those matrices among the orders. We also compared observed patterns of integration to theoretical expectations based on common development and function. Our results point to a largely shared pattern of inter-trait correlations, implying that mammalian skull diversity has been produced upon a common covariance structure that remained similar for at least 65 million years. Comparisons with a rodent genetic variance/covariance matrix suggest that this broad similarity extends also to the genetic factors underlying phenotypic variation. In contrast to the relative constancy of inter-trait correlation/covariance patterns, magnitudes varied markedly across groups. Several morphological modules hypothesized from shared development and function were detected in the mammalian taxa studied. Our data provide evidence that mammalian skull evolution can be viewed as a history of inter-module parcellation, with the modules themselves being more clearly marked in those lineages with lower overall magnitude of integration. The implication of these findings is that the main evolutionary trend in the mammalian skull was one of decreasing the constraints to evolution by promoting a more modular architecture.

Keywords

Constraints Genetic architecture Selection Development Phenotypic and genetic covariance 

Notes

Acknowledgements

We thank Campbell Rolian and Katherine Willmore for the opportunity to present this data in the 2008 AAPA meeting. Benedikt Hallgrímsson and 2 anonymous referees made constructive comments on an earlier version of this paper. We are also grateful to the people and institutions that provided generous help and access to mammal collections: E. Westwig, N. Simmons, R. Voss and R. MacPhee (AMNH); L. Tomsett, P. Jenkins and D. Hills (BMNH); B. Paterson, W. Stanley, and L. Heaney (FMNH); J. Chupasko and M. Omura (MCZ); M. Godinot, F. Renoult, C. Lefrève and J. Cuisin (MNHN); L. Salles, J. Oliveira, F. Barbosa, and S. Franco (MNRJ); S. Costa and J. de Queiroz (MPEG); Staff at the Museo de la Universidad Nacional Mayor de San Marcos; M. de Vivo and J. Gualda (MZUSP); H. van Grouw and B. Bekkum-Ansari (Naturalis); R. Thorington, R. Chapman and L. Gordon (NMNH); M. Harman (Powell-Cotton Museum); Georges Lenglet (RBINS); E. Gilissen and W. Wendelen (RMCA); R. Asher, I. Thomas and D. Willborn (ZMB); F. Smith and S. Tardif (University of Tennessee, and the Oak Ridge Associated Universities Marmoset Research Center); C. Zollikofer, M. Ponce de Léon and T. Jashashvili (Zürich Universität); R. Smith (Museu de Anatomia da UNIFESP); E. Liberti (Museu de Anatomia “Professor Alfonso Bovero”). This research was supported by grants and fellowships from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Coordenação de Aperfeiçoamento de Pessoal do Ensino Superior (CAPES), Conselho Nacional de Pesquisas (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Fundação José Bonifácio (FUJB), Projeto de Conservação e Utilização Sustentável da Diversidade Biológica (PROBIO), and an American Museum of Natural History Collections Study Grant.

References

  1. Ackermann, R. R. (2005). Ontogenetic integration of the hominoid face. Journal of Human Evolution, 48, 175–197. doi: 10.1016/j.jhevol.2004.11.001.PubMedCrossRefGoogle Scholar
  2. Ackermann, R. R., & Cheverud, J. M. (2000). Phenotypic covariance structure in tamarins (genus Saguinus): A comparison of variation patterns using matrix correlation and common principal component analysis. American Journal of Physical Anthropology, 111, 489–501. doi :10.1002/(SICI)1096-8644(200004)111:4<489::AID-AJPA5>3.0.CO;2-U.PubMedCrossRefGoogle Scholar
  3. Ackermann, R. R., & Cheverud, J. M. (2004). Morphological integration in primate evolution. In M. Pigliucci & K. Preston (Eds.), Phenotypic integration: Studying the ecology and evolution of complex phenotypes (pp. 302–319). Oxford: Oxford University Press.Google Scholar
  4. Almasy, L., & Blangero, J. (1998). Multipoint quantitative trait linkage analysis in general pedigrees. American Journal of Human Genetics, 62, 1198–1211. doi: 10.1086/301844.PubMedCrossRefGoogle Scholar
  5. Asher, R. J. (2007). A database of morphological characters and a combined-data reanalysis of placental mammal phylogeny. BMC Evolutionary Biology, 7, 108. doi: 10.1186/1471-2148-7-108.PubMedCrossRefGoogle Scholar
  6. Beck, R. M. D., Bininda-Emonds, O. R. P., Cardillo, M., Liu, F.-G. R., & Purvis, A. (2006). A higher-level MRP supertree of placental mammals. BMC Evolutionary Biology, 6, 93.Google Scholar
  7. Begin, M., & Roff, D. A. (2005). From micro- to macroevolution through quantitative genetic variation: Positive evidence from field crickets. Journal of Evolutionary Biology, 58(10), 2287–2304.Google Scholar
  8. Beldade, P., & Brakefield, P. M. (2003). Concerted evolution and developmental integration in modular butterfly wing patterns. Evolution & Development, 5, 169–179. doi: 10.1046/j.1525-142X.2003.03025.x.CrossRefGoogle Scholar
  9. Berg, R. L. (1960). The ecological significance of correlation pleiades. Evolution; International Journal of Organic Evolution, 14(2), 171–180. doi: 10.2307/2405824.Google Scholar
  10. Chernoff, B., & Magwene, P. M. (1999). Morphological integration: 40 Years later. In E. C. Olson & R. L. Miller (Eds.), Morphological integration (pp. 316–360). Chicago: University of Chicago Press.Google Scholar
  11. Cheverud, J. M. (1982). Phenotypic genetic and environmental morphological integration in the cranium. Evolution; International Journal of Organic Evolution, 36(3), 499–516. doi: 10.2307/2408096.Google Scholar
  12. Cheverud, J. M. (1984). Quantitative genetics and developmental constraints on evolution by selection. Journal of Theoretical Biology, 110, 155–172. doi: 10.1016/S0022-5193(84)80050-8.PubMedCrossRefGoogle Scholar
  13. Cheverud, J. M. (1988). A comparison of genetic and phenotypic correlations. Evolution; International Journal of Organic Evolution, 42, 958–968. doi: 10.2307/2408911.Google Scholar
  14. Cheverud, J. M. (1989). A comparative analysis of morphological variation patterns in the papionins. Evolution; International Journal of Organic Evolution, 43(8), 1737–1747. doi: 10.2307/2409389.Google Scholar
  15. Cheverud, J. M. (1995). Morphological integration in the saddle-back tamarin (Saguinus fuscicollis) cranium. American Naturalist, 145, 63–89. doi: 10.1086/285728.CrossRefGoogle Scholar
  16. Cheverud, J. M. (1996). Developmental integration and the evolution of pleiotropy. American Zoologist, 36, 44–50.Google Scholar
  17. Cheverud, J. M., Ehrich, T. H., Vaughn, T. T., Koreishi, S. F., Linsey, R. B., & Pletscher, L. S. (2004). Pleiotropic effects on mandibular morphology II: Differential epistasis and genetic variation in morphological integration. Journal of Experimental Zoology Part B, 302(5), 424–435. doi: 10.1002/jez.b.21008.CrossRefGoogle Scholar
  18. Cheverud, J. M., & Marroig, G. (2007). Comparing covariance matrices: Random skewers method compared to the common principal components model. Genetics and Molecular Biology, 30(2), 461–469. doi: 10.1590/S1415-47572007000300027.CrossRefGoogle Scholar
  19. Cheverud, J. M., Wagner, G., & Dow, M. M. (1989). Methods for the comparative analysis of variation patterns. Systematic Zoology, 38(3), 201–213. doi: 10.2307/2992282.CrossRefGoogle Scholar
  20. De Conto, V. (2007). Genética quantitativa e evolução morfológica em Akodon cursor. PhD thesis, Universidade Federal do Rio de Janeiro, RJ.Google Scholar
  21. Eble, G. (2004). The macroevolution of phenotypic integration. In M. Pigliucci & K. Preston (Eds.), Phenotypic integration: Studying the ecology and evolution of complex phenotypes (pp. 253–273). Oxford: Oxford University Press.Google Scholar
  22. Ehrich, T., Vaughn, T. T., Koreishi, S. F., Linsey, R. B., Pletscher, L. S., & Cheverud, J. M. (2003). Pleiotropic effects on mandibular morphology I. Developmental morphological integration and differential dominance. Journal of Experimental Zoology (Molecular and Developmental Evolution), 296B, 58–79.CrossRefGoogle Scholar
  23. Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (ed. 4). Harlow, Essex, UK: Longmans Green.Google Scholar
  24. Gonzalez-Jose, R., van der Molen, S., Gonzalez-Perez, E., & Hernandez, M. (2004). Patterns of phenotypic covariation and correlation in modern humans as viewed from morphological integration. American Journal of Physical Anthropology, 123(1), 69–77. doi: 10.1002/ajpa.10302.PubMedCrossRefGoogle Scholar
  25. Hansen, T. F., & Houle, D. (2008). Measuring and comparing evolvability and constraint in multivariate characters. Journal of Evolutionary Biology, 21(5), 1201–1219. doi: 10.1111/j.1420-9101.2008.01573.x.PubMedCrossRefGoogle Scholar
  26. Helms, J. A., Cordero, D., & Tapadia, M. D. (2005). New insights into craniofacial morphogenesis. Development, 132, 851–861. doi: 10.1242/dev.01705.PubMedCrossRefGoogle Scholar
  27. Kenney-Hunt, J. P., Wang, B., Norgard, E. A., Fawcett, G., Falk, D., Pletscher, L. S., et al. (2008). Pleiotropic patterns of quantitative trait loci for seventy murine skeletal traits. Genetics, 178, 2275–2288. doi: 10.1534/genetics.107.084434.PubMedCrossRefGoogle Scholar
  28. Kitazoe, Y., Kishino, H., Waddell, P. J., Nakajima, N., Okabayashi, T., Watabe, T., et al. (2007). Robust time estimation reconciles views of the antiquity of placental mammals. PLoS ONE, 2, e384. doi: 10.1371/journal.pone.0000384.PubMedCrossRefGoogle Scholar
  29. Klingenberg, C. P. (2004). Integration, modules and development: Molecules to morphology to evolution. In M. Pigliucci & K. Preston (Eds.), Phenotypic integration: Studying the ecology and evolution of complex phenotypes (pp. 213–230). Oxford: Oxford University Press.Google Scholar
  30. Lande, R. (1979). Quantitative genetic analysis of multivariate evolution applied to brain: Body size allometry. Evolution; International Journal of Organic Evolution, 33, 402–416. doi: 10.2307/2407630.Google Scholar
  31. Marroig, G., & Cheverud, J. M. (2001). A comparison of phenotypic variation and covariation patterns and the role of phylogeny ecology and ontogeny during cranial evolution of New World monkeys. Evolution; International Journal of Organic Evolution, 55(12), 2576–2600.PubMedGoogle Scholar
  32. Marroig, G., & Cheverud, J. M. (2005). Size as a line of least evolutionary resistance: Diet and adaptive morphological radiation in New World monkeys. Evolution; International Journal of Organic Evolution, 59, 1128–1142.PubMedGoogle Scholar
  33. Marroig, G., et al. (2008). Companion paper.Google Scholar
  34. Mitteroecker, P., & Bookstein, F. (2008). The evolutionary role of modularity and integration in the hominoid cranium. Evolution; International Journal of Organic Evolution, 62, 943–958. doi: 10.1111/j.1558-5646.2008.00321.x.PubMedGoogle Scholar
  35. Moore, W. J. (1981). The mammalian skull. Cambridge: Cambridge University Press.Google Scholar
  36. Morriss-Kay, G. M. (2001). Derivation of the mammalian skull vault. Journal of Anatomy, 199, 143–151. doi: 10.1017/S0021878201008093.PubMedCrossRefGoogle Scholar
  37. Murphy, W. J., Eizirik, E., Johnson, W. E., Zhang, Y. P., Ryder, O. A., & O’Brien, S. J. (2001). Molecular phylogenetics and the origins of placental mammals. Nature, 409, 614–618. doi: 10.1038/35054550.PubMedCrossRefGoogle Scholar
  38. Oliveira, F. B., Porto, A., & Marroig, G. Similarity of phenotypic covariance and correlation patterns in the skull along the evolution of Old World Monkeys: A case for the G evolutionary stasis. (Submitted to the Journal of Human Evolution).Google Scholar
  39. Olson, E. C., & Miller, R. L. (1958). Morphological integration. Chicago: University of Chicago Press.Google Scholar
  40. Pavlicev, M., Kenney-Hunt, J. P., Norgard, E. A., Roseman, C. C., Wolf, J. J., & Cheverud, J. M. (2008). Genetic variation in pleiotropy: Differential epistasis as a source of variation in the allometric relationship between long bone lengths and body weight. Evolution; International Journal of Organic Evolution, 62(1), 199–213.PubMedGoogle Scholar
  41. Preston, K. A., & Ackerly, D. D. (2004). Allometry and evolution in modular organisms. In M. Pigliucci & K. Preston (Eds.), Phenotypic integration: Studying the ecology and evolution of complex phenotypes (pp. 80–106). Oxford: Oxford University Press.Google Scholar
  42. Revell, L., Harmon, L. J., Langerhans, R. B., & Kolbe, J. J. (2007). A phylogenetic approach to determining the importance of constraint on phenotypic evolution in the neotropical lizard, Anolis cristatellus. Evolutionary Ecology Research, 9, 261–282.Google Scholar
  43. Roff, D. A. (1997). Evolutionary quantitative genetics. New York: Chapman and Hall.Google Scholar
  44. Roff, D. A., & Mousseau, T. (2005). The evolution of the phenotypic covariance matrix: Evidence for selection and drift in Melanoplus. Journal of Evolutionary Biology, 18(4), 1104–1114. doi: 10.1111/j.1420-9101.2005.00862.x.PubMedCrossRefGoogle Scholar
  45. Shirai, L. T., & Marroig, G. Evolutionary constraint and freedom: A comparison between New World marsupials and monkeys skull (submitted).Google Scholar
  46. Smith, K. K. (1996). Integration of craniofacial structures during development in mammals. American Zoologist, 36, 70–79.Google Scholar
  47. Smith, K. K. (1997). Comparative patterns of craniofacial development in Eutherian and Metatherian mammals. Evolution; International Journal of Organic Evolution, 51(5), 1663–1678. doi: 10.2307/2411218.Google Scholar
  48. Smith, K. K. (2001). The evolution of mammalian development. Bulletin of the Museum of Comparative Zoology, 156, 119–135.Google Scholar
  49. Sneath, P. H., & Sokal, R. R. (1973). Numerical taxonomy. San Francisco: WH Freeman and Company.Google Scholar
  50. Springer, M. S., Stanhope, M. J., Madsen, O., & de Jong, W. W. (2004). Molecules consolidate the placental mammal tree. Trends in Ecology & Evolution, 19(8), 430–438. doi: 10.1016/j.tree.2004.05.006.CrossRefGoogle Scholar
  51. Steppan, S. J., Phillips, P. C., & Houle, D. (2002). Comparative quantitative genetics: Evolution of the G matrix. Trends in Ecology & Evolution, 17(7), 320–327. doi: 10.1016/S0169-5347(02)02505-3.CrossRefGoogle Scholar
  52. Tapadia, M. D., Cordero, D. R., & Helms, J. A. (2005). It’s all in your head: New insights into craniofacial development and deformation. Journal of Anatomy, 207, 461–477.PubMedGoogle Scholar
  53. Wagner, G. P., & Altenberg, L. (1996). Complex adaptations and the evolution of evolvability. Evolution; International Journal of Organic Evolution, 50(3), 967–976. doi: 10.2307/2410639.Google Scholar
  54. Wagner, G. P., Kenney-Hunt, J. P., Pavlicev, M., Peck, J. R., Waxman, D., & Cheverud, J. M. (2008). Pleiotropic scaling of gene effects and the “Cost of Complexity”. Nature, 452, 470–473. doi: 10.1038/nature06756.PubMedCrossRefGoogle Scholar
  55. Wagner, G. P., Pavlicev, M., & Cheverud, J. M. (2007). The road to modularity. Nature Reviews Genetics, 8, 921–931. doi: 10.1038/nrg2267.PubMedCrossRefGoogle Scholar
  56. Wible, J. R., Rougier, G. W., Novacek, M. J., & Asher, R. J. (2007). Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary. Nature, 447, 1003–1006. doi: 10.1038/nature05854.PubMedCrossRefGoogle Scholar
  57. Willis, J. H., Coyne, J. A., & Kirkpatrick, M. (1991). Can one predict the evolution of quantitative characters without genetics? Evolution; International Journal of Organic Evolution, 45(2), 441–444. doi: 10.2307/2409678.Google Scholar
  58. Wilson, D. E., & Reeder, D. M. (Eds.). (2005). Mammal species of the world: A taxonomic and geographic reference. Baltimore: Johns Hopkins University Press.Google Scholar
  59. Young, R. L., & Badyaev, A. V. (2006). Evolutionary persistence of phenotypic integration: Influence of developmental and functional relationships on complex trait evolution. Evolution; International Journal of Organic Evolution, 60(6), 1291–1299.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Arthur Porto
    • 1
  • Felipe B. de Oliveira
    • 1
  • Leila T. Shirai
    • 1
  • Valderes De Conto
    • 1
  • Gabriel Marroig
    • 1
  1. 1.Laboratório de Evolução de Mamíferos, Departamento de Genética e Biologia Evolutiva, Instituto de BiociênciasUniversidade de São PauloSao PauloBrasil

Personalised recommendations