Evolutionary Biology

, Volume 35, Issue 2, pp 150–157 | Cite as

Systematics must Embrace Comparative Biology and Evolution, not Speed and Automation

  • Marcelo R. de CarvalhoEmail author
  • Flávio A. Bockmann
  • Dalton S. Amorim
  • Carlos Roberto F. Brandão


Systematists have come under a barrage of criticism because of the alleged inadequacy of the ‘traditional’ taxonomic paradigm to curb the ‘biodiversity crisis’ and expeditiously make available the products of systematic research—usually species names—to the professional biological ‘user’ community (including ecologists, physiologists, population geneticists, and conservationists). The accusations leveled on systematists range from being ‘slow’ to ‘incapable’ of furnishing these products at a rate considered (by users) appropriate, especially given that the professional systematic community is portrayed as being in stark decline while operating in a quickly deteriorating natural world. Some of the critics have proposed solutions to this ‘taxonomic impediment’ in the form of a triumvirate adjoining a unitary taxonomic cyberstructure + automated DNA barcoding + molecular phylogeny, which we consider to be nothing but a threefold miopia; one critic has even gone as far as to suggest that biologists who need systematists can circumvent this dependency by ‘doing systematics themselves’. The application of a quick-fix, ‘automated-pragmatist’ model is antithetical to a science endowed with a strong epistemological and theoretical foundation. We view the current propaganda in favor of automation and pragmatism in systematics as a distraction from the real issues confronting systematists, who must do more to impede the current trend that has ‘marginalized’ organismal biology in general. Simply increasing the rate of species descriptions, as suggested by critics, will not ameliorate the ‘crisis’—taxa that correspond to incorrect hypotheses of biological entities (i.e. that are not monophyletic) will compromise the reliability of systematic information. Systematists must therefore provide more than ‘binomials’—they must strive to produce vigorous hypotheses of comparative biology that are historical and theory-rich in order to augment the general reference system that is so critical to research in other biological sciences and conservation.


Taxonomic impediment Phylogenetic systematics Taxonomy Comparative biology General reference system Historical biology Conservation 



The authors are supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). We thank numerous colleagues for discussing the issues here presented, in particular Bob Schelly and Jorge Crisci, as well as one anonymous reviewer.


  1. AMNAT (Org.) (2006). Biodiversity—the megascience in focus. Outcomes and recommendations. Organized by Associação Memoria Naturalis, Rio de Janeiro: Museu Nacional.Google Scholar
  2. Barrett, R. D. H., & Hebert, P. D. N. (2005). Identifying spiders through DNA barcodes. Canadian Journal of Zoology, 83(3), 481–491.CrossRefGoogle Scholar
  3. Blaxter, M. L. (2004). The promise of a DNA taxonomy. Philosophical Transactions of the Royal Society of London B, 359, 669–679.CrossRefGoogle Scholar
  4. Buckup, P., Menezes, N. A. & Ghazzi, M. (Eds.) (2007). Catálogo das Espécies de Peixes de Água Doce do Brasil. Rio de Janeiro: Museu Nacional.Google Scholar
  5. de Carvalho, M. R., Bockmann, F. A., Amorim, D. S., de Vivo, M., de Toledo-Piza, M., Menezes, N. A., de Figueiredo, J. L., Castro, R. M. C., Gill, A. C., McEachran, J. D., Compagno, L. J. V., Schelly, R. C., Britz, R., Lundberg, J. G., Vari, R. P., & Nelson, G. (2005). Revisiting the taxonomic impediment. Science, 307, 353.PubMedCrossRefGoogle Scholar
  6. de Carvalho, M. R., Bockmann, F. A., Amorim, D. S., Brandão, C. R. F, de Vivo, M., de Figueiredo, J. L., Britski, H. A., de Pinna, M. C. C., Menezes, N. A., Marques, F. P. L., Papavero, N., Cancello, E. M., Crisci, J. V., McEachran, J. D., Schelly, R. C., Lundberg, J. G., Gill, A. C., Britz, R., Wheeler, Q. D., Stiassny, M. L. J., Parenti, L. R., Page, L. M., Wheeler, W. C., Faivovich, J., Vari, R. P., Grande, L., Humphries, C. J., DeSalle, R., Ebach, M. C., & Nelson, G. J. (2007). Taxonomic impediment or impediment to taxonomy? A commentary on systematics and the cybertaxonomic-automation paradigm. Evolutionary Biology, 3/4, 140–143.CrossRefGoogle Scholar
  7. Cotterill, F. P. D. (1995). Systematics, biological knowledge and environmental conservation. Biodiversity & Conservation, 4, 183–205.CrossRefGoogle Scholar
  8. Crisci, J. V. (2006a). One-dimensional systematists: Perils in a time of steady progress. Systematic Botany, 31(1), 215–219.CrossRefGoogle Scholar
  9. Crisci, J. V. (2006b). Making taxonomy visible. Systematic Botany, 31(2), 439–440.CrossRefGoogle Scholar
  10. Dalton, R. (2003). Natural history collections in crisis as funding is slashed. Nature, 423, 575.PubMedGoogle Scholar
  11. DeSalle, R. (2006). Species discovery versus species identification in DNA barcoding efforts: Response to Rubinoff. Conservation Biology, 20(5), 1545–1547.PubMedCrossRefGoogle Scholar
  12. DeSalle, R., Giribet, G. & Wheeler, W. C. (Eds.) (2002). Molecular systematics and evolution: Theory and practice. Berlin: Birkhäuser.Google Scholar
  13. DeSalle, R., Egan, M. G., & Siddall, M. (2005). The unholy trinity: Taxonomy, species delimitation and DNA barcoding. Philosophical Transactions of the Royal Society of London B, 360, 1905–1916.CrossRefGoogle Scholar
  14. Ebach, M. C., & Holdrege, C. (2005). DNA barcoding is no substitute for taxonomy. Nature, 434, 697.PubMedCrossRefGoogle Scholar
  15. Ennos, R. A., French, G. C., & Hollingsworth, P. M. (2005). Conserving taxonomic complexity. Trends in Ecology and Evolution, 20(4), 164–168.PubMedCrossRefGoogle Scholar
  16. Eschmeyer, W. N., & Froese, R. (1999). The statistics of ichthyology. Abstracts of the 1999 Annual Meeting of the American Society of Ichthyologists and Herpetologists (p. 99). University Park: Penn State University.Google Scholar
  17. Evenhuis, N. L. (2007). Helping solve the “other” taxonomic impediment: completing the eight steps to total enlightenment and taxonomic Nirvana. Zootaxa, 1407, 3–12.Google Scholar
  18. Farris, J. S. (1977). On the phenetic approach to vertebrate classification. In: Hecht, M. K., Goody, P. C. & Hecht, B. M. (Eds.), Major patterns in vertebrate evolution. NATO Advanced Study Institute Series, no. 14 (pp. 823–850). New York: Plenum Press.Google Scholar
  19. Farris, J. S. (1979). The information content of the phylogenetic system. Systematic Zoology, 28, 483–519.CrossRefGoogle Scholar
  20. Farris, J. S. (1983). The logical basis of phylogenetic analysis. In: Platnick, N. I. & Funk, V. (Eds.), Advances in cladistics 2 (pp. 7–36). New York: Columbia University Press.Google Scholar
  21. Flowers, R. W. (2007a). Comments on “Helping solve the ‘other’ taxonomic impediment: Completing the eight steps to total enlightenment and taxonomic Nirvana” by Evenhuis (2007). Zootaxa, 1494, 67–68.Google Scholar
  22. Flowers, R. W. (2007b). Taxonomy’s unexamined impediment. The Systematist, 28, 3–7.Google Scholar
  23. Forest, F., Grenyer, R., Rouget, M., Davies T. J., Cowling, R. M., Faith, D. P., Balmford, A., Manning, J. C., Proches, S., van der Bank, M., Reeves, G., Hedderson, T. A. J., & Savolainen, V. (2007). Preserving the evolutionary potential of floras in biodiversity hotspots. Nature, 445, 757–760.PubMedCrossRefGoogle Scholar
  24. Garland T., Bennett, A. F., & Rezende, E. L. (2005). Phylogenetic approaches in comparative physiology. The Journal of Experimental Biology, 208, 3015–3035.PubMedCrossRefGoogle Scholar
  25. Gaston, K. J., & O’Neill, M. A. (2004). Automated species identification: Why not? Philosophical Transactions of the Royal Society of London B, 359, 655–667.CrossRefGoogle Scholar
  26. Godfray, H. C. J. (2002). Challenges for taxonomy. Nature, 417, 17–19.PubMedCrossRefGoogle Scholar
  27. Godfray, H. C. J. (2007). Linnaeus in the information age. Nature, 446, 259–260.PubMedCrossRefGoogle Scholar
  28. Godfray, H. C. J., & Knapp, S. (2004). Introduction. Philosophical Transactions of the Royal Society of London B, 359, 559–569.CrossRefGoogle Scholar
  29. Gotelli, N. J. (2004). A taxonomic wish-list for community ecology. Philosophical Transactions of the Royal Society of London B, 359, 585–597.CrossRefGoogle Scholar
  30. Grant, T., Faivovich, J., & Pol, D. (2003). The perils of ‘point-and-click’ systematics. Cladistics, 19, 276–285.CrossRefGoogle Scholar
  31. Gropp, R. E. (2003). Are university natural science collections going extinct? BioScience, 5, 550.CrossRefGoogle Scholar
  32. Gropp, R. E. (2004). Threatened species: University natural science collections in the United States. Systematics & Biodiversity, 1(3), 285–286.CrossRefGoogle Scholar
  33. Hebert, P. D. N., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological identifications through DNA barcodes. Philosophical Transactions of the Royal Society of London B, 270, 313–321.Google Scholar
  34. Hennig, W. (1966). Phylogenetic systematics. Urbana: Univ. of Illinois Press.Google Scholar
  35. Janzen, D. H. (2004). Now is the time. Philosophical Transactions of the Royal Society of London B, 359, 731–732.CrossRefGoogle Scholar
  36. Knapp, S., Bateman, R. M., Chalmers, N. R., Humphries, C. J., Rainbow, P. S., Smith, A. B., Taylor, P. D., Vane-Wright, R. I., & Wilkinson, M. (2002). Taxonomy needs evolution, not revolution. Nature, 419, 559.PubMedCrossRefGoogle Scholar
  37. Landrum, L. R. (2001). What has happened to descriptive systematics? What would make it thrive? Systematic Botany, 26(2), 438–442.Google Scholar
  38. Lipscomb, D., Platnick, N., & Wheeler, Q. (2003). The intellectual content of taxonomy: a comment on DNA taxonomy. Trends in Ecology & Evolution, 18(2), 65–66.CrossRefGoogle Scholar
  39. Löbl, I., & Leschen, R. A. B. (2005). Demography of coleopterists and their thoughts on DNA barcoding and the Phylocode, with commentary. Coleoptera Bulletin, 59, 284–292.CrossRefGoogle Scholar
  40. McNeely, J. A. (2002). The role of taxonomy in conserving biodiversity. Journal of Nature Conservation, 10, 145–153.CrossRefGoogle Scholar
  41. Meier, R., & Dikow, T. (2004). The significance of specimen databases from taxonomic revisions for estimating and mapping global species diversity of invertebrates and repatriating reliable specimen data. Conservation Biology, 18(2), 478–488.CrossRefGoogle Scholar
  42. Meyer, C. P., & Paulay, G. (2005). DNA barcoding: Error rates based on comprehensive sampling. PloS Biology, 3(12), 2229–2238.CrossRefGoogle Scholar
  43. Miller, S. E. (2007). DNA barcoding and the renaissance of taxonomy. Proceedings of the National Academy of Sciences, 104(12), 4775–4776.CrossRefGoogle Scholar
  44. Naylor, G. J. P., Ryburn, J. A., Fedrigo, O., & López, J. A. (2005). Phylogenetic relationships among the major lineages of modern elasmobranchs. In: Hamlett, W. C. (Eds.), Reproductive biology and phylogeny of Chondrichthyes (pp. 1–26). Enfield: Science Press.Google Scholar
  45. Nelson, G. (2004). Cladistics: Its arrested development. In: Williams, D. M. & Forey, P. L. (Eds.), Milestones in systematics: The development of comparative biology, (pp. 127–147). London: Taylor and Francis.Google Scholar
  46. Nelson, G., & Platnick, N. (1981). Systematics and biogeography, cladistics and vicariance. New York: Columbia Univ. Press.Google Scholar
  47. Nelson, J. S. (2006). Fishes of the world (4th ed.). New York: John Wiley and Sons.Google Scholar
  48. Pimenta, B. V. S., Haddad, C. F. B., Nascimento, L. B., Cruz, C. A. G., & Pombal, J. P., Jr. (2005). Comment on “Status and trends of amphibian declines and extinctions worldwide”. Science, 309, 1999b.CrossRefGoogle Scholar
  49. Prendini, L. (2005). Comments on “identifying spiders through DNA barcodes”. Canadian Journal of Zoology, 83(3), 498–504.CrossRefGoogle Scholar
  50. Purvis, A., Gittleman, J. L., & Brooks, T. (2005). Phylogeny and conservation. Oxford: Oxford Univ. Press.Google Scholar
  51. Raven, P. H. (2004). Taxonomy: Where are we now? Philosophical Transactions of the Royal Society of London B, 359, 729–730.CrossRefGoogle Scholar
  52. Reis, R. E., Kullander, S. O. & Ferraris, C. J., Jr. (Eds.) (2003). Check-list of the freshwater fishes from South and Central America. Porto Alegre: EDIPUCRS.Google Scholar
  53. Rieppel, O. C. (1988). Fundamentals of comparative biology. Basel: Birhäuser.Google Scholar
  54. Rodman, J. E., & Cody, J. H. (2003). The taxonomic impediment overcome: NSF’s partnerships for enhancing expertise in taxonomy (PEET) as a model. Systematic Biology, 52(3), 428–435.PubMedGoogle Scholar
  55. Sabaj, M. H., Armbruster, J. W., Ferraris, Jr., C. J., Friel, J. P., Lundberg, J. G. & Page, L. M. (2003). The all catfish species inventory (Eds.). Internet address:
  56. Santos, C. M. D., & Amorim, D. S. (2007). Why biogeographical hypotheses need a well supported phylogenetic framework: A conceptual evaluation. Papéis Avulsos de Zoologia, 47(4), 63–73.Google Scholar
  57. Schmidly, D. J. (2005). What it means to be a naturalist and the future of natural history at American universities. Journal of Mammalogy, 86(3), 449--456.CrossRefGoogle Scholar
  58. Scotland, R., Hughes, C., Bailey, D., & Wortley, A. (2003). The big machine and the much-maligned taxonomist. Systematics & Biodiversity, 1(2), 139–143.CrossRefGoogle Scholar
  59. Seberg, O., Humphries, C. J., Knapp, S., Stevenson, D. W., Petersen, G., Scharff, N., & Andersen, N. M. (2003). Shortcuts in systematics? A commentary on DNA-based taxonomy. Trends in Ecology & Evolution, 18(2), 63–65.CrossRefGoogle Scholar
  60. Stiassny, M. L. J. (1992). Phylogenetic analysis and the role of systematics in the biodiversity crisis. In: Eldredge, N. (Ed.), Systematics, ecology and the biodiversity crisis (pp. 109–120). New York: Columbia University Press.Google Scholar
  61. Stiassny, M. L. J., & de Pinna, M. C. C. (1994). Basal taxa and the role of cladistic patterns in the evaluation of conservation priorities: A view from freshwater. In: Forey, P. L., Humphries, C. J., & Vane-Wright, R. I. (Eds.), Systematics and conservation evaluation (pp. 235–249). Oxford: Clarendon Press.Google Scholar
  62. Suarez, A. V., & Tsutsui, N. D. (2004). The value of museum collections for research and society. BioScience, 54(1), 66–74.CrossRefGoogle Scholar
  63. Tautz, D., Arctander, P., Minelli, A., Thomas, R. H., & Vogler, A. P. (2002). DNA points the way ahead in taxonomy. Nature, 418, 479.PubMedCrossRefGoogle Scholar
  64. Tautz, D., Arctander, P., Minelli, A., Thomas, R. H., & Vogler, A. P. (2003). A plea for DNA taxonomy. Trends in Ecology & Evolution, 18(2), 70–74.CrossRefGoogle Scholar
  65. Thiele, K., & Yeates, D. (2002). Tension arises from duality at the heart of taxonomy. Nature, 419, 337.PubMedCrossRefGoogle Scholar
  66. Vane-Wright, R. I. (1996). Systematics and the conservation of biological diversity. Annals of the Missouri Botanical Garden, 83, 47–57.CrossRefGoogle Scholar
  67. Vari, R. P. (1991). Systematics of the neotropical characiform genus Steindachnerina Fowler (Pisces: Ostariophysi). Smithsonian Contributions to Zoology, 507, 1–118.Google Scholar
  68. Wheeler, Q. D. (2004). Taxonomic triage and the poverty of phylogeny. Philosophical Transactions of the Royal Society of London B, 359, 571–583.CrossRefGoogle Scholar
  69. Wheeler, Q. D. (2005). Losing the plot: DNA “barcodes” and taxonomy. Cladistics, 21(4), 405–407.CrossRefGoogle Scholar
  70. Wheeler, Q. D. (2007). Invertebrate systematics or spineless taxonomy? In: Zhang, Z. -Q. & Shear, W. A. (Eds.), Linnaeus tercentenary: Progress in invertebrate taxonomy, Zootaxa, 1668, pp. 11–18.Google Scholar
  71. Wheeler, Q. D., & Meier, R. (Eds.) (2000). Species concepts and phylogenetic theory: A debate. New York: Columbia University Press.Google Scholar
  72. Wheeler, Q. D., & Platnick, N. (2000). The phylogenetic species concept (sensu Wheeler and Platnick). In: Wheeler, Q. D. & Meier, R. (Eds.), Species concepts and phylogenetic theory: A debate (pp. 55–69). New York: Columbia University Press.Google Scholar
  73. Wheeler, Q. D., Raven, P. H., & Wilson, E. O. (2004). Taxonomy: Impediment or expedient? Science, 303, 285.PubMedCrossRefGoogle Scholar
  74. Will, K. W., & Rubinoff, D. (2004). Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics, 20(1), 47–55.CrossRefGoogle Scholar
  75. Wilson, E. O. (2003a). The encyclopedia of life. Trends in Ecology & Evolution, 18(2), 77–80.CrossRefGoogle Scholar
  76. Wilson, E. O. (2003b). Pheidole in the new world: A dominant, hyperdiverse ant genus. Cambridge: Harvard University Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Marcelo R. de Carvalho
    • 1
    Email author
  • Flávio A. Bockmann
    • 2
  • Dalton S. Amorim
    • 2
  • Carlos Roberto F. Brandão
    • 3
  1. 1.Departamento de Zoologia, Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil
  2. 2.Departamento de Biologia, FFCLRPUniversidade de São PauloRibeirão PretoBrazil
  3. 3.Museu de ZoologiaUniversidade de São PauloSão PauloBrazil

Personalised recommendations