Evolutionary Biology

, 34:121 | Cite as

The Genome Strikes Back: The Evolutionary Importance of Defence Against Mobile Elements

Synthesis

Abstract

Increasingly, we regard the genome as a site and source of genetic conflict. This fascinating ‘bottom-up’ view brings up appealing connections between genome biology and whole-organism ecology, in which populations of elements compete with one another in their genomic habitat. Unlike other habitats, though, a host genome has its own evolutionary interests and is often able to defend itself against molecular parasites. Most well-studied organisms employ strategies to protect their genomes against the harmful effects of genomic parasites, including methylation, various pathways of RNA interference, and more unusual tricks such as repeat induced point-mutation (RIP). These genome defence systems are not obscure biological curiosities, but fundamentally important to the integrity and cohesion of the genome, and exert a powerful influence on genome evolution.

Keywords

Transposable elements Intragenomic conflict Epigenetics Evolution of genetic systems 

References

  1. Agrawal, N., & Dasaradhi, P., et al. (2003). RNA interference: Biology, mechanism, and applications. Microbiology and Molecular Biology Reviews, 67(4), 657–688.PubMedCrossRefGoogle Scholar
  2. Antonovics, J., & Abrams, J. (2004). Intratetrad mating and the evolution of linkage relationships. Evolution, 58(4), 72–709.Google Scholar
  3. Arkhipova, I., & Meselson, M. (2000). Transposable elements in sexual and ancient asexual taxa. Proceedings of the National Academy Sciences United States of America, 97(26), 14473–14477.CrossRefGoogle Scholar
  4. Arkhipova, I., & Meselson, M. (2004). Deleterious transposable elements and the extinction of asexuals. Bioessays, 27, 76–85.CrossRefGoogle Scholar
  5. Barlow, D. P. (1993) Methylation and imprinting: From host defense to gene regulation? Science, 260(5106), 309–310.PubMedCrossRefGoogle Scholar
  6. Bergman, C. M., et al. (2006) Recurrent insertion and duplication generate networks of transposable element sequences in the Drosophila Melanogaster genome. Genome Biology, 7:R112. doi: 10.1186/Gb–2006–7–11–R112.
  7. Bernstein, E., & Allis, C. (2005). RNA meets chromatin. Genes and Development, 19, 1635–1655.PubMedCrossRefGoogle Scholar
  8. Braun, F. N., & Liberles, D. A. (2004). Repeat-modulated population genetic effects in fungal proteins. Journal of Molecular Evolution, 59, 97–102.PubMedCrossRefGoogle Scholar
  9. Brookfield, J. F. Y. (1986). The population biology of transposable elements. Philosophical Transactions of the Royal Society of London Series B, 312(1154), 217–226.PubMedCrossRefGoogle Scholar
  10. Brookfield, J. F. Y. (1991). Models of repression of transposition in P-M hybrid dysgenesis by P cytotype and by zygotically encoded repressor proteins. Genetics, 128, 471–486.PubMedGoogle Scholar
  11. Brookfield, J. F. Y. (2005). The ecology of the genome: Mobile DNA elements and their hosts. Nature Reviews Genetics, 6(2), 128–136.PubMedCrossRefGoogle Scholar
  12. Brookfield, J. F. Y., & Badge, R. M. (1997). Population genetics models of transposable elements. Genetica, 100, 281–294.PubMedCrossRefGoogle Scholar
  13. Burt, A. (2003). Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proceedings of the Royal Society of London Series B-Biological Sciences, 270, 921–928.CrossRefGoogle Scholar
  14. Cambareri, E. B., Singer, M. J. et al. (1991). Recurrence of repeat-induced point mutation (RIP) in Neurospora crassa. Genetics, 127(4), 699–710.PubMedGoogle Scholar
  15. Cameron, J., & Loh, E., et al. (1979). Evidence for transposition of dispersed repetitive DNA families in yeast. Cell, 16, 739–751.PubMedCrossRefGoogle Scholar
  16. Chakalova, L., Debrand, E. et al. (2005). Replication and transcription: Shaping the landscape of the genome. Nature Reviews Genetics, 6, 669–677.PubMedCrossRefGoogle Scholar
  17. Chan, S. W.-L. et al. (2005). Gardening the genome: DNA methylation in Arabidopsis Thaliana. Nature Reviews Genetics, 6, 351–360.PubMedCrossRefGoogle Scholar
  18. Charlesworth, B., Charlesworth, D. et al. (2003). The effects of genetic and geographic structure on neutral variation. Annual Review Of Ecology and Systematics, 34, 99–125.CrossRefGoogle Scholar
  19. Charlesworth, B., & Langley, C. H. (1989). The population genetics of drosophila transposable elements. Annual Review of Genetics, 23, 251–287.PubMedCrossRefGoogle Scholar
  20. Cheng, X. (1995). Structure and function of DNA methyltransferases. Annual Review of Biophysics and Biomolecular Structure, 24, 293–318.PubMedCrossRefGoogle Scholar
  21. Clark, J. B., & Kidwell, M. G. (1997). A phylogenetic perspective on P transposable element evolution in Drosophila. Proceedings of the National Academy of Sciences USA, 11428–11433.Google Scholar
  22. Clutterbuck, A. (2004). MATE transposable elements in Aspergillus nidulans: Evidence of repeat-induced point mutation. Fungal Genetics and Biology, 41, 308–316.PubMedCrossRefGoogle Scholar
  23. Colot, V., & Rossignol, J.-L. (1999). Eukaryotic DNA methylation as an evolutionary device. Bioessays, 21, 402–411.PubMedCrossRefGoogle Scholar
  24. Daboussi, M.-J., & Capy, P. (2003). Transposablde elements in filamentous fungi. Annual Review Of Microbiology, 57, 275–299.PubMedCrossRefGoogle Scholar
  25. Daboussi, M.-J., Daviere, J.-M. et al. (2002). Evolution of the Fot1 transposons in the genus Fusarium: Discontinuous distribution and epigenetic inactivation. Molecular Biology and Evolution, 19, 510–520.PubMedGoogle Scholar
  26. Daniels, S. B. et al. (1990). Evidence for horizontal transmission of the P transposable element between Drosophila species. Genetics, 124, 339–255.PubMedGoogle Scholar
  27. Deininger, P. L., Batzer, M. A. et al. (1992). Master genes in mammalian repetitive DNA amplification. Trends in Genetics, 8(9), 307–311.PubMedCrossRefGoogle Scholar
  28. Dimitri, P., Corradini, N., et al. (2005). The paradox of functional heterochromatin. Bioessays, 27, 29–41.PubMedCrossRefGoogle Scholar
  29. Edwards, R. J., & Brookfield, J. F. Y. (2003). Transiently beneficial insertions could maintain mobile DNA sequences in variable environments. Molecular Biology and Evolution, 20, 30–37.PubMedCrossRefGoogle Scholar
  30. Engels, W. (1997). Invasions of P elements. Genetics, 145, 11–15.PubMedGoogle Scholar
  31. Fincham, J. R. S., et al. (1989). Premeiotic disruption of duplicated and triplicated copies of the Neurospora crassa Am (Glutamate Dehydrogenase) gene. Current Genetics, 15, 327–334.PubMedCrossRefGoogle Scholar
  32. Finnegan, D. J. (1992) Transposable elements. Current Opinion in Genetics and Development, 2(6), 861–867.PubMedCrossRefGoogle Scholar
  33. Freitag, M., & Selker, E. U. (2005). Controlling DNA methylation: Many roads to one modification. Current Opinion in Genetics and Development, 15, 191–199.PubMedCrossRefGoogle Scholar
  34. Galagan, J. A., Calvo, S. E., et al. (2003). The genome sequence of the filamentous fungus Neurospora crassa. Nature, 422, 859–868.PubMedCrossRefGoogle Scholar
  35. Galagan, J. A., & Selker E. U. (2004). RIP: The evolutionary cost of genome defense. Trends in Genetics, 20(9), 417–423.PubMedCrossRefGoogle Scholar
  36. Goddard, M. R., & Burt, A. (1999). Recurrent invasion and extinction of a selfish gene. Proceedings of the National Academy of Sciences of the United States of America, 96(24), 13880–13885.PubMedCrossRefGoogle Scholar
  37. Gutierrez, A., & Sommer, R. (2004). Evolution of Dnmt-2 and Mbd-2-like genes in the free-living Nematodes pristionchus pacificus, Caenorhabditis Elegans and Caenorhabditis Briggsae. Nucleic Acids Research, 32, 6388–6396.PubMedCrossRefGoogle Scholar
  38. Hamann, A., Feller, F., et al. (2000). The degenerate DNA transposon Pat and repeat-induced point mutation (RIP) in Podospora anserina. Molecular and General Genetics, 263, 1061–1069.PubMedCrossRefGoogle Scholar
  39. Hastings, I. M. (1994). Selfish DNA as a method of pest control. Philosophical Transactions of the Royal Society of London Series B, 344, 313–324.PubMedCrossRefGoogle Scholar
  40. Hastings, I. M. (1999). The costs of sex due to deleterious intracellular parasites. Journal Of Evolutionary Biology, 12(1), 177–183.CrossRefGoogle Scholar
  41. Hirochika, H., Okamoto, H. et al. (2000). Silencing of retrotransposons in arabidopsis and reactivation by the Ddm1 mutation. Plant Cell, 12, 357–368.PubMedCrossRefGoogle Scholar
  42. Hood, M. E. (2005). Repetitive DNA in the automictic fungus Microbotryum violaceum. Genetica, 124(1), 1–10.PubMedCrossRefGoogle Scholar
  43. Hurst, G. D. D., Hurst, L. D. et al. (1992). Intranuclear conflict and its role in evolution. Trends in Ecology and Evolution, 7(11), 373–378.CrossRefGoogle Scholar
  44. Huttenhofer, A. et al. (2005). Non-coding RNAs: Hope or hype? Trends of Genetics, 21, 289–297.CrossRefGoogle Scholar
  45. Ikeda, K., Nakayashiki, H. et al. (2002). Repeat-induced point mutation (RIP) in Magnaporthe grisea: Implications for its sexual cycle in the natural field environment. Molecular Microbiology, 45(5), 1355–1364.PubMedCrossRefGoogle Scholar
  46. Janowski, B. A. et al. (2007). Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nature Chemical Biology, 3, 166–173.PubMedCrossRefGoogle Scholar
  47. Jia, D., Jurkowska R. Z., Zhang, X., Jeltsch, A., & Cheng, X. (2007) Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature, 449, 248–251.PubMedCrossRefGoogle Scholar
  48. Johnson, J. M., Edwards, S. et al. (2005). Dark matter in the genome: Evidence of widespread transcrition detected by microarray tiling experiments. Trends in Genetics, 21(2), 93–104.PubMedCrossRefGoogle Scholar
  49. Johnson, L. J. et al. (2005). The evolution of intratetrad mating rates. Evolution, 59(12), 2525–2532.PubMedGoogle Scholar
  50. Jones, P. A., & Takai, D. (2001). The role of DNA methylation in mammalian epigenetics. Science, 293, 1068–1070.PubMedCrossRefGoogle Scholar
  51. Jordan, I. K., & Mcdonald, J. F. (1999). Tempo and mode of Ty element evolution in Saccharomyces cerevisiae. Genetics, 151, 1341–1351.PubMedGoogle Scholar
  52. Josse, T., Teysset, L., et al. (2007). Telomeric trans-silencing: An epigenetic repression combining RNA silencing and heterochromatin formation. PLOS Genetics. doi: 10.1371/Journal.Pgen.0030158.Eor.
  53. Kato, M., Takashima, K. et al. (2004). Epigenetic control of CACTA transposon mobility in Arabidopsis Thaliana. Genetics, 168, 961–969.PubMedCrossRefGoogle Scholar
  54. Kazazian, H. H. (1998) Mobile elements and disease. Current Opinion in Genetics Development, 8(3), 343–350.PubMedCrossRefGoogle Scholar
  55. Kidwell, M. G., & Lisch, D. R. (2001). Transposable elements, parasitic DNA and genome evolution. Evolution, 55(1), 1–24.PubMedGoogle Scholar
  56. Kinsey, J. A., & Helber, J. (1989). Isolation of a transposable element from Neurospora crassa. Proceedings of the National Academy of Sciences United States of America, 86, 1929–1933.CrossRefGoogle Scholar
  57. Klose, R. J., & Bird, A. P. (2006) Genomic DNA methylation: The mark and its mediators. Trends of Biochemical Science, 31, 89–97.CrossRefGoogle Scholar
  58. Koufopanou, V., Goddard, M. R. et al. (2002). Adaptation for horizontal transfer in a homing endonuclease. Molecular Biology and Evolution, 19(3), 239–246.PubMedGoogle Scholar
  59. Langley, C. H., Montgomery, E. et al. (1988). On the role of unequal exchange in the containment of transposable element copy number. Genetical Research, 52(3), 223–235.PubMedCrossRefGoogle Scholar
  60. Levine E, Zhang Z, Kuhlman T, Hwa, T (2007) Quantitative characteristics of gene regulation by small RNA. PLoS Biology, 5(9), e229.PubMedCrossRefGoogle Scholar
  61. Li, E. et al. (1992). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell, 69, 915–926.PubMedCrossRefGoogle Scholar
  62. Martello, G. et al. (2007) MicroRNA control of nodal signalling. Nature, 449, 183–189.PubMedCrossRefGoogle Scholar
  63. Mette, M., Van Der Winden, J. et al. (2002). Short RNAs can identify new candidate transposable element families in Arabidopsis. Plant Physiology, 130, 6–9.PubMedCrossRefGoogle Scholar
  64. Nagy, J., Victor, E. et al. (2007). Why don’t all whales have cancer? A novel hypothesis resolving Peto’s Paradox. Integrative and Comparative Biology, 47, 317–328.CrossRefGoogle Scholar
  65. Naumov, G. I., Naumova, E. S., & Sniegowski, P. D. (1998). Saccharomyces paradoxus and Saccharomyces cerevisiae are associated with exudates of North American oaks. Canadian Journal of Microbiology, 44(11), 1045–1050.PubMedCrossRefGoogle Scholar
  66. Nee, S., & Smith, J. M. (1990). The evolutionary biology of molecular parasites. Parasitology, 100, S5–S18.PubMedCrossRefGoogle Scholar
  67. Ng, H.-H., & Bird A. (1999). DNA methylation and chromatin modification. Current Opinion in Genetics and Development, 9, 158–163.PubMedCrossRefGoogle Scholar
  68. Noubissi, F. K., Aparna, K. et al. (2001). Evidence for dominant suppression of repeat-induced point mutation (RIP) in crosses with the wild-isolated Neurospora crassa strains sugartown and adiopodoume-7. Journal of Genetics, 80, 55–61.PubMedCrossRefGoogle Scholar
  69. Nuzhdin, S. V., & Petrov D. A. (2003). Transposable elements in clonal lineages: Lethal hangover from sex. Biological Journal of the Linnaean Society, 79, 33–41.CrossRefGoogle Scholar
  70. Petrov, D. A., & Hartl D. L. (1997). Trash DNA is what gets thrown away:high rate of DNA loss in Drosophila. Gene, 205, 279–289.PubMedCrossRefGoogle Scholar
  71. Promislow, D. et al. (1999) Genomic demography: A life-history analysis of transposable element evolution. Proceedings of the Royal Society of London Series B, 266, 1555–1560.PubMedCrossRefGoogle Scholar
  72. Robertson, H. M. (1995). The Tc1-mariner superfamily of transposons in animals. Journal of Insect Physiology, 41, 99–105.CrossRefGoogle Scholar
  73. Rowold, D. J., & Herrera, R. J. (2000). Alu elements and the human genome. Genetica, 108(1), 57–72.PubMedCrossRefGoogle Scholar
  74. Selker, E. U. (1990). Premeiotic instability of repeated sequences in Neurospora crassa. Annual Review of Genetics, 24, 579–613.PubMedCrossRefGoogle Scholar
  75. Selker E. U. (2002). Repeat-induced gene silencing in fungi. Advances in Genetics, 46, 439–450.PubMedCrossRefGoogle Scholar
  76. Selker, E. U., & Garrett P. (1988). DNA sequence duplications trigger gene inactivation in Neurospora crassa. Proceedings of National Academy Sciences United States of America, 85, 6870–6874.CrossRefGoogle Scholar
  77. Suzuki S., Ono R., Narita T., Pask A. J., Shaw G., et al. (2007) Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting. PLoS Genetics, 3(4), e55.PubMedCrossRefGoogle Scholar
  78. Vastenhouw, N., Fischer, S. et al. (2003). A genome-wide screen identifies 27 genes involved in transposon silencing in C. elegans. Current Biology, 13, 1311–1316.PubMedCrossRefGoogle Scholar
  79. Vinogradov, A. E. (2003). Selfish DNA is Maladaptive; evidence from the plant red list. Trends in Genetics, 19(11), 609–614.PubMedCrossRefGoogle Scholar
  80. Yao, M.-C., & Chao, L.-J. (2005). RNA-guided DNA deletion in tetrahymena: An RNAi-based mechanism for programmed genome rearrangements. Annual Review of Genetics, 39, 537–559.PubMedCrossRefGoogle Scholar
  81. Yi, S., & Streelman, T. (2005). Genome size is negatively correlated with effective population size in ray-finned fish. Trends In Genetics, 21, 643–646.PubMedCrossRefGoogle Scholar
  82. Yoder, J. A. (1997). Cytosine methylation and the ecology of intragenomic parasites. Trends of Genetics, 13(8), 335–340.CrossRefGoogle Scholar
  83. Zilberman, D. et al. (2003). Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Current Biology, 14, 1214–1220.CrossRefGoogle Scholar
  84. Zhang, X., et al. (2006). Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell, 126(6), 1189–1201.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of ReadingReadingUK

Personalised recommendations