Advertisement

Evolutionary Biology

, Volume 34, Issue 1–2, pp 28–48 | Cite as

Paleontological Patterns, Macroecological Dynamics and the Evolutionary Process

  • Bruce S. Lieberman
  • William MillerIII
  • Niles Eldredge
Synthesis

Abstract

Here we consider evolutionary patterns writ large in the fossil record. We argue that Darwin recognized but downgraded or de-emphasized several of these important patterns, and we consider what a renewed emphasis on these patterns can tell us about the evolutionary process. In particular, one of the key patterns we focus on is the role geographic isolation plays in fomenting evolutionary divergence; another one of the key patterns is stasis of species; the final pattern is turnovers, which exist at several hierarchical scales, including regional ecosystem replacement and pulses of speciation and extinction. We consider how each one of these patterns are related to the dynamic of changing ecological and environmental conditions over time and also investigate their significance in light of other concepts including punctuated equilibria and hierarchy theory. Ultimately, we tie each of these patterns into a framework involving macroecological dynamics and the important role environmental change plays in shaping evolution from the micro- to macroscale.

Keywords

Darwin Environment Ecology Species Punctuated equilibria Turnovers Rates of speciation 

Notes

Acknowledgments

BSL thanks NSF EAR-0518976, NASA Astrobiology NNG04GM41G, and a Self Faculty Award for supporting his research. All three of us are grateful to the National Center for Ecological Analysis and Synthesis (NCEAS), University of California, Santa Barbara, for providing a proving ground for these ideas; they are listed in the bibliographic citation of Eldredge et al. (2005). Steve Thurston prepared the figures. We thank two anonymous reviewers, Benedikt Hallgrimsson, Neil Blackstone, and Warren Allmon for comments on an earlier version of this paper.

References

  1. Alvarez, L. W., Alvarez, W., Asaro, F., & Michel, H. V. (1980). Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science, 208, 1095–1108PubMedGoogle Scholar
  2. Ausich, W. I. (1997). Regional encrinites: A vanished lithofacies. In C. E. Brett & G. C. Baird (Eds.), Paleontological events: Stratigraphic, ecological, and evolutionary implications. New York: Columbia University PressGoogle Scholar
  3. Avise, JC. (1994). Molecular markers, natural history, and evolution. New York: Chapman and HallGoogle Scholar
  4. Barrett, P. H., Gautrey, P. J., Herbert, S., Kohn, D., & Smith, S. (1987). Charles Darwin’s notebooks, 1836–1844. Ithaca, New York: Cornell University PressGoogle Scholar
  5. Bennett, K. D. (1990). Milankovitch cycles and their effects on species in ecological and evolutionary time. Paleobiology, 16, 11–21Google Scholar
  6. Bennett, K. D. (1997). Evolution and ecology. New York: Cambridge University PressGoogle Scholar
  7. Benton, M. J., & Pearson, P. N. (2001). Speciation in the fossil record. Trends in Ecology and Evolution, 16, 405–411PubMedGoogle Scholar
  8. Bowler, P. J. (1996). Life’s splendid drama. Chicago: University of Chicago PressGoogle Scholar
  9. Brett, C. E., & Baird, G. C. (1995). Coordinated stasis and evolutionary ecology of Silurian to Middle Devonian faunas in the Appalachian Basin. In D. H. Erwin & R. L. Anstey (Eds.), New approaches to speciation in the fossil record (pp. 285–315). New York: Columbia University Press, New YorkGoogle Scholar
  10. Brochu, CA. (1997). Morphology, fossils, divergence timing, and the phylogenetic relationships of Gavialis. Systematic Biology, 46, 479–522PubMedGoogle Scholar
  11. Brogniart, A. (1829). General considerations on the nature of the vegetation which covered the surface of the earth at the different epochs of the formation of its crust. Edinburgh New Philosophical Journal, 6, 349–371Google Scholar
  12. Brooks, D. R., & McLennan, D. A. (2002). The nature of diversity: An evolutionary voyage of discovery. Chicago: University of Chicago PressGoogle Scholar
  13. Brown, J. H. (1995). Macroecology. Chicago: University of Chicago PressGoogle Scholar
  14. Browne, J. (1983). The secular ark: Studies in the history of biogeography. New Haven: Yale University PressGoogle Scholar
  15. Burton, C. J., & Eldredge, N. (1974). Two new subspecies of Phacops rana (Trilobita) from the Middle Devonian of north-west Africa. Palaeontology, 17, 349–363Google Scholar
  16. Cartwright, P. (2003). Developmental insights into the origin of complex colonial hydrozoans. Journal of Integrative and Comparative Biology, 43, 82–86Google Scholar
  17. Cheetham, A. H. (2001). Evolutionary stasis vs. change. In D. E. G. Briggs & R. Crowther (Eds.), Palaeobiology II. Oxford: Blackwell Scientific PressGoogle Scholar
  18. Claridge M. F., Dawah H. A., & Wilson M. R. (Eds.) (1997). Species: The units of biodiversity. London: Chapman and HallGoogle Scholar
  19. Coleman D. C., & Hendrix P. F. (Eds.) (2000). Invertebrates as webmasters in ecosystems. New York: CABI PublishingGoogle Scholar
  20. Cracraft, J. (1989). Speciation and its ontology: the empirical consequences of alternative species concepts for understanding patterns and processes of differentiation. In D. Otte & J. A. Endler (Eds.) Speciation and its consequences (pp 28–59). Sunderland, Mass: SinauerGoogle Scholar
  21. Cuvier, G. (1812). Discours sur les Révolutions de la Surface du Globe, ParisGoogle Scholar
  22. Darwin, C. (1840). Pencil sketch. In Darwin, F. (1909), Foundations of the origins of Species (pp 1–53). Cambridge: Cambridge University PressGoogle Scholar
  23. Darwin, C. (1859). On the origin of species by means of natural selection; or the preservation of favored races in the struggle for life (Reprinted 1st ed.). Cambridge, Mass.: Harvard University PressGoogle Scholar
  24. Darwin, F. (1909), Foundations of the origins of species. Cambridge: Cambridge University PressGoogle Scholar
  25. Dawkins, R. (1976). The selfish gene. New York: Oxford University PressGoogle Scholar
  26. De Queiroz, K. (1998). The general lineage concept of species, species criteria, and the process of speciation. In D. J. Howard & S. H. Berlocher (Eds.), Endless forms: Species and speciation (pp 57–75). New York: Oxford University PressGoogle Scholar
  27. DiMichele, W. A., Behrensmeyer, A. K., Olszewski, T. D., Labandeira, C. C., Pandolfi, J. M., Wing, S. L., & Bobe, R. (2004). Long-term stasis in ecological assemblages: evidence from the fossil record. Annual Review of Ecology and Systematics, 35, 285–322Google Scholar
  28. Dobzhansky, T. (1937). Genetics and the origin of species. New York: Columbia University Press Reprint EditionGoogle Scholar
  29. Ehrlich, P., & Raven, P. H. (1969). Differentiation of populations. Science, 165, 1228–1232PubMedGoogle Scholar
  30. Eldredge, N. (1971). The allopatric model and phylogeny in Paleozoic invertebrates. Evolution, 25, 159–167Google Scholar
  31. Eldredge, N. (1973). Systematics of Lower and lower Middle Devonian species of the trilobite Phacops Emmrich in North America. Bulletin of the American Museum of Natural History, 151, 285–338Google Scholar
  32. Eldredge, N. (1985). Unfinished synthesis. New York: Oxford University PressGoogle Scholar
  33. Eldredge, N. (1989). Macroevolutionary dynamics. New York: McGraw Hill, New YorkGoogle Scholar
  34. Eldredge, N. (1995). Reinventing darwin. New York: J. Wiley & Sons, New YorkGoogle Scholar
  35. Eldredge, N. (1996). Hierarchies in macroevolution. In D Jablonski, D. H. Erwin & J. H. Lipps (Eds.), Evolutionary palaeobiology (pp 42–61). Chicago: University of Chicago PressGoogle Scholar
  36. Eldredge, N. (2003). The sloshing bucket: How the physical realm controls evolution. In J. P. Crutchfield & P Schuster (Eds.), Evolutionary dynamics: Exploring the interplay of selection, accident, neutrality, and function (pp 3–32). Oxford: Oxford University PressGoogle Scholar
  37. Eldredge, N. (2005). Darwin: Discovering the tree of life. New York: W. W. NortonGoogle Scholar
  38. Eldredge, N., & Branisa, L. (1980). Calmoniid trilobites of the Lower Devonian Scaphiocoelia Zone of Bolivia, with remarks on related species. Bulletin of the American Museum of Natural History, 165, 181–289Google Scholar
  39. Eldredge, N., & Cracraft, J. (1980). Phylogenetic patterns and the evolutionary process. New York: Columbia University PressGoogle Scholar
  40. Eldredge, N., & Gould, S. J. (1972). Punctuated equilibria: an alternative to phyletic gradualism. In Schopf, T. J. (ed). Models in paleobiology (pp. 82–115). San Francisco: Freeman, CooperGoogle Scholar
  41. Eldredge, N., & Salthe, S. N. (1984). Hierarchy and evolution. Oxford Surveys of Evolutionary Biology, 1, 184–208Google Scholar
  42. Eldredge, N., Thompson, J. N., Brakefield, P. M., Gavrilets S., Jablonski D, Jackson, J. B. C, Lenski, R. E., Lieberman, B. S., McPeek, M. A., & Miller W. III. (2005). The dynamics of evolutionary stasis. Paleobiology, 31 (Suppl), 133–145Google Scholar
  43. Frakes, L. A., Francis, J. E., & Syktus, J. I. (1992). Climate modes of the phanerozoic. Cambridge: Cambridge University PressGoogle Scholar
  44. Ghiselin, M. T. (1987). Species concepts, individuality and objectivity. Biology and Philosophy, 2, 127–143Google Scholar
  45. Gilpin, M., & Hanski, I. (1991). Metapopulation dynamics: Empirical and theoretical investigations. London: Academic PressGoogle Scholar
  46. Gould, S. J. (1965). Is uniformitarianism necessary? American Journal of Science, 263, 223–228CrossRefGoogle Scholar
  47. Gould, S. J., (1989). Wonderful life. New York: W.W. NortonGoogle Scholar
  48. Gould, S. J., (1996). Full house. New York: Harmony BooksGoogle Scholar
  49. Gould, S. J., (2002). The structure of evolutionary theory. Cambridge, Mass.: Harvard University PressGoogle Scholar
  50. Gould, S. J., & Eldredge N. (1977). Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology, 3, 115–151Google Scholar
  51. Gould, S. J., & Eldredge, N. (1993). Punctuated equilibrium comes of age. Nature, 366, 223–227PubMedGoogle Scholar
  52. Grinnell, G. (1974). The rise and fall of Darwin’s first theory of transmutation. Journal of Historical Biology, 7, 259–273Google Scholar
  53. Hall, B. K. (2003). Evolutionary developmental biology, 2nd ed. New York: SpringerGoogle Scholar
  54. Hallam, A. (1981). Relative importance of plate movements, eustasy, and climate in controlling major biogeographical changes since the early Mesozoic. In G. Nelson & D. E. Rosen (Eds.), Vicariance biogeography: A Critique (pp. 303–330). New York: Columbia University PressGoogle Scholar
  55. Hallam, A., & Wignall, P. B. (1997). Mass extinctions and their aftermath. Oxford: Oxford University PressGoogle Scholar
  56. Hey, J. (2001). Genes, categories, and species: The evolutionary and cognitive causes of the species problem. Oxford: Oxford University PressGoogle Scholar
  57. Hooker, J. D. (1853). The botany of the antarctic voyage of H. M. discovery ships “Erebus” and “Terror” in the years 1839–1843. II. Flora Novae-Zelandiae. Part I. Flowering plants. London: Lovell ReeveGoogle Scholar
  58. Howard, D. J., & Berlocher, S. H. (Eds.) (1998). Endless forms: Species and speciation. Oxford: Oxford University PressGoogle Scholar
  59. Hull, D. L. (1973). Darwin and his critics. Chicago: University of Chicago PressGoogle Scholar
  60. Huntley, B., & Webb T. III (1989). Migration: species’ response to climatic variations caused by changes in the earth’s orbit. Journal of Biogeography, 16, 5–19Google Scholar
  61. Huxley J., Hardy A. C., & Ford, E. B. (Eds.) (1954). Evolution as a process. London: George Allen and UnwinGoogle Scholar
  62. Ivany, L. C., & Schopf, K. M. (Eds.) (1996). New perspectives on faunal stability in the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology, 127 (Special Issue), 1–359Google Scholar
  63. Jablonski, D. (2004). The evolutionary role of mass extinctions: disaster, recovery and something in-between. In Taylor, P. D. (Ed.), Extinctions in the history of life (pp. 151–177). Cambridge: Cambridge University PressGoogle Scholar
  64. Jackson, J. B. C, & Cheetham, A. H. (1999). Tempo and mode of speciation in the sea. Trends in Ecology and Evolution, 14, 72–77PubMedGoogle Scholar
  65. Janzen, D. H. (1985). On ecological fitting. Oikos, 45, 308–310Google Scholar
  66. Kinch, M. P. (1980). Geographical distribution and the origin of life: the development of early nineteenth century British explanations. Journal of the History of Biology, 13, 91–119PubMedGoogle Scholar
  67. Kottler, M. J. (1978). Charles Darwin’s biological species concept and theory of geographic speciation: the transmutation notebooks. Annals of Science, 35, 275–297Google Scholar
  68. Lieberman, B. S. (1992). An extension of the SMRS concept into a phylogenetic context. Evolutionary Theory, 10, 157–161Google Scholar
  69. Lieberman, B. S. (1993). Systematics and biogeography of the “Metacryphaeus Group,” (Trilobita, Devonian) with a comment on adaptive radiations and the geological history of the Malvinokaffric Realm. Journal of Paleontology, 67, 549–570Google Scholar
  70. Lieberman, B. S. (1994). Evolution of the trilobite subfamily Proetinae and the origin, evolutionary affinity, and extinction of the Middle Devonian proetid fauna of Eastern North America. Bulletin of the American Museum of Natural History, 223, 1–176Google Scholar
  71. Lieberman, B. S. (1997). Early Cambrian paleogeography and tectonic history: a biogeographic approach. Geology, 25, 1039–1042Google Scholar
  72. Lieberman, B. S. (1999). Turnover pulse in trilobites during the Acadian Orogeny. In: Proceedings of the Appalachian biogeography symposium. Virginia Museum of Natural History Special Publications Number, vol. 7, pp. 99–108Google Scholar
  73. Lieberman, B. S. (2000). Paleobiogeography. New York: Plenum/Kluwer Academic Press, New YorkGoogle Scholar
  74. Lieberman, B. S. (2001). A test of whether rates of speciation were unusually high during the Cambrian radiation. Proceedings of the Royal Society of London, Biological Sciences, 268, 1707–1714Google Scholar
  75. Lieberman, B. S. (2003a). Paleobiogeography: the relevance of fossils to biogeography. Annual Review of Ecology and Systematics, 34, 51–69Google Scholar
  76. Lieberman, B. S. (2003b). Biogeography of the Cambrian radiation: Deducing geological processes from trilobite evolution. Special Papers in Palaeontology, 70, 59–72Google Scholar
  77. Lieberman, B. S. (2003c). Taking the pulse of the Cambrian radiation. Journal of Integrative and Comparative Biology, 43, 229–237Google Scholar
  78. Lieberman, B. S. (2005). Geobiology and palaeobiogeography: tracking the coevolution of the Earth and its biota. Palaeogeography, Palaeoclimatology, Palaeoecology, 219, 23–33Google Scholar
  79. Lieberman, B. S., & Eldredge, N. (1996). Trilobite biogeography in the Middle Devonian: Geological processes and analytical methods. Paleobiology, 22(1), 66–79Google Scholar
  80. Lieberman, B. S., & Kloc, G. (1997). Evolutionary and biogeographic patterns in the Asteropyginae (Trilobita, Devonian). Bulletin of the American Museum of Natural History, 232, 1–127Google Scholar
  81. Lieberman, B. S., Brett, C. E., & Eldredge, N. (1995). Patterns and processes of stasis in two species lineages from the Middle Devonian of New York State. Paleobiology, 21(1), 15–27Google Scholar
  82. Lieberman, B. S., Edgecombe, G. D., & Eldredge, N. (1991). Systematics and Biogeography of the “Malvinella Group,” Calmoniidae (Trilobita, Devonian). Journal of Paleontology, 65, 824–843Google Scholar
  83. Lynch, J. D. (1989). The gauge of speciation: on the frequencies of modes of speciation. In D Otte & J. A. Endler (Eds)., Speciation and its consequences. (pp. 527–553). Sunderland, Mass: SinauerGoogle Scholar
  84. Matthew, W. D. (1915). Climate and evolution. Annals of the New York Academy of Sciences, 24, 171–318Google Scholar
  85. Mayden, R. L. (1997). A hierarchy of species concepts: the denouement in the saga of the species problems. In M. F. Claridge, H. A. Dawah, & M. R. Wilson (Eds)., Species: The units of biodiversity. (pp. 381–424). London: Chapman and HallGoogle Scholar
  86. Mayr, E. (1942). Systematics and the origin of species. New York: Dover PressGoogle Scholar
  87. Mayr, E. (1963). Animal species and evolution. Cambridge, Mass: Harvard University PressGoogle Scholar
  88. Mayr, E. (1976). Evolution and the diversity of life: Selected essays. Cambridge, Mass: Harvard University PressGoogle Scholar
  89. Mayr, E. (1982). The growth of biological Thought. Cambridge, Mass.: Harvard University PressGoogle Scholar
  90. McKinnon, J. S., & Rundle, H. D. (2002). Speciation in nature: the threespine stickleback model systems. Trends in Ecology and Systematics, 17, 480–488Google Scholar
  91. Meert, J. G., & Lieberman, B. S. (2004). A palaeomagnetic and palaeobiogeographic perspective on latest Neoproterozoic and early Cambrian tectonic events. Journal of the Geological Society of London, 161(1), 1–11Google Scholar
  92. Miller, W. III. (1986). Paleoecology of benthic community replacement. Lethaia, 19(2), 225–231Google Scholar
  93. Miller, W. III. (1996). Ecology of coordinated stasis. Palaeogeography, Palaeoclimatology, Palaeoecology, 127, 177–190Google Scholar
  94. Miller, W. III. (2001). The structure of species, outcomes of speciation and the ‘species problem’: ideas for paleobiology. Palaeogeography, Palaeoclimatology, Palaeoecology, 176(1), 1–10Google Scholar
  95. Miller, W. III. (2002a). Regional ecosystems and the origin of species. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 225, 137–156Google Scholar
  96. Miller, W. III. (2002b). Succession and succession-like processes. In Eldredge N (Ed). Life on earth: An encyclopedia of biodiversity, ecology, and evolution (pp. 671–677). Santa Barbara: ABC-CLIOGoogle Scholar
  97. Miller, W. III. (2003). A place for phyletic evolution within the theory of punctuated equilibria: Eldredge pathways. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 2003, 463–476Google Scholar
  98. Miller, W. III. (2004). Assembly of large ecologic systems: macroeolutionary connections. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 2004, 629–640Google Scholar
  99. Miller, W. III. (2005). The paleobiology of rarity: some new ideas. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 2005, 683–693Google Scholar
  100. Miller, W. III. (2006). What every paleontologist should know about species: new concepts and questions. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte., 2006, 557–576Google Scholar
  101. Norell, M. A., & Novacek, M. J. (1992). The fossil record and evolution: comparing cladistic and paleontologicc evidence for vertebrate history. Science, 255, 1690–1693PubMedGoogle Scholar
  102. Osborn, H. F. (1906). The causes of extinction of Mammalia. American Naturalist, 40, 829–859Google Scholar
  103. Peterson, K. J., Lyons, J. B., Nowak, K. S., Takacs, C. M., Wargo, M. J., & McPeek, M. A. (2004). Estimating metazoan divergence times with a molecular clock. Proceedings of the National Academy of Sciences, USA, 101, 6536–6541Google Scholar
  104. Polis G. A., Power M. E., & Huxel G. R. (Eds.) (2004). Food webs at the landscape level. University of Chicago Press, Chicago, 548 ppGoogle Scholar
  105. Pulliam, H. R. (1996). Sources and sinks: empirical evidence and population consequences. In O. E. Rhodes, R. K. Chesser, & M. H. Smith (Eds.), Population dynamics in ecological space and time (pp. 45–69). Chicago: University of Chicago PressGoogle Scholar
  106. Raup, D. (1989). Extinction: bad genes or bad luck? New York: W.W. NortonGoogle Scholar
  107. Richardson, R. A. (1981). Biogeography and the genesis of Darwin’s ideas on transmutation. Journal of Historical Biology, 14(1), 1–41Google Scholar
  108. Ruddiman, W. F. (2001). Earth’s climate: Past and future. New York: W. H. FreemanGoogle Scholar
  109. Salthe S. (1985). Evolving hierarchical systems. New York: Columbia University PressGoogle Scholar
  110. Salthe, S. N. (1993). Development and evolution: Complexity and change in biology. Cambridge, Mass.: MIT PressGoogle Scholar
  111. Schluter, D. (1996). Ecological causes of adaptive radiation. American Naturalist, 148, S40–S64Google Scholar
  112. Schluter, D. (2000). The ecology of adaptive radiation. Oxford: Oxford University PressGoogle Scholar
  113. Simpson, G. G. (1944). Tempo and mode in evolution. New York: Columbia University PressGoogle Scholar
  114. Simpson, G. G. (1961). Principles of animal taxonomy. New York: Columbia University PressGoogle Scholar
  115. Stanley, S. M., & Yang, X. (1987). Approximate evolutionary stasis for bivalve morphology over millions of years: a multivariate, multilineage study. Paleobiology, 13, 113–139Google Scholar
  116. Sulloway, F. J. (1979). Geographic isolation in Darwin’s thinking: the vicissitudes of a crucial idea. In W. Coleman & C. Limoges (Eds.), Studies in the history of biology (pp. 23–65). Baltimore: Johns Hopkins University PressGoogle Scholar
  117. Thompson, J. N. (1998). Rapid evolution as an ecological process. Trends in Ecology and Evolution, 13, 329–332Google Scholar
  118. Turelli, M., Barton, N. H., & Coyne, J. A. (2001). Theory and speciation. Trends in Ecology and Evolution, 16, 330–343PubMedGoogle Scholar
  119. Ulanowicz, R. E. (1997). Ecology, the ascendent perspective. New York: Columbia University PresGoogle Scholar
  120. Von Buch, L. (1825). Physicalische Beschreibung der Canarischen InselnGoogle Scholar
  121. Vrba, E. S. (1980). Evolution, species and fossils: how does life evolve? South African Journal of Science, 76, 61–84Google Scholar
  122. Vrba, E. S. (1985). Environment and evolution: alternative causes of the temporal distribution of evolutionary events. South African Journal of Science, 81, 229–236Google Scholar
  123. Vrba, E. S. (1987). Ecology in relation to speciation rates: some case histories of Miocene-Recent mammal clades. Evolutionary Ecology, 1, 283–300Google Scholar
  124. Vrba, E. S. (1992). Mammals as a key to evolutionary theory. Journal of Mammalogy, 73, 1–28Google Scholar
  125. Vrba, E. S. (1993). Turnover-pulses, the Red Queen, and related topics. American Journal of Science, 293, 418–452CrossRefGoogle Scholar
  126. Vrba, E. S. (1995). On the connections between paleoclimate and evolution. In E. S. Vrba, G. H. Denton, T. C. Partridge, & L. H. Burckle (Eds.), Paleoclimate and evolution with emphasis on human origins (pp. 24–45). New Haven: Yale University PressGoogle Scholar
  127. Vrba, E. S. (2004). Ecology, development, and evolution: perspectives from the fossil record. In B. K. Hall, R. D. Pearson, & G. B. Müller (Eds.), Environment, development, and evolution: toward a synthesis (pp. 85–105). Cambridge, Mass.: MIT PressGoogle Scholar
  128. Wallace, A. R. (1855). On the law which has regulated the introduction of new species. Annals of the Magazine of Natural History, 2nd Series, 16, 184–196Google Scholar
  129. Wallace, A. R. (1857). On the natural history of the Aru Islands. Annals of the Magazine of Natural History, 2nd Series, 20, 473–485Google Scholar
  130. Wallace, A. R. (1858). Note on the theory of permanent and geographical varieties. Zoologist, 16, 5887–5888Google Scholar
  131. Wallace, A. R. (1876). The geographical distribution of animals. London: MacMillan and Company, LondonGoogle Scholar
  132. Wilson R. A. (Ed). (1999). Species: New interdisciplinary essays. Cambridge, Mass.: MIT PressGoogle Scholar
  133. Wheeler Q. D., & Meier R. (Eds.) (2000). Species concepts and phylogenetic theory: A debate. New York: Columbia University PressGoogle Scholar
  134. Wignall, P. B. (2004). Causes of mass extinctions. In PD Taylor (Ed.) Extinctions in the history of life (pp. 119–150). Cambridge: Cambridge University PressGoogle Scholar
  135. Wright, S. W. (1931). Evolution in Mendelian populations. Genentics, 16, 97–159Google Scholar
  136. Wray, G. A., Levinton, J. S., & Shapiro, L. H. (1996). Molecular evidence for deep Precambrian divergences among Metazoan phyla. Science, 274, 568–573Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Bruce S. Lieberman
    • 1
  • William MillerIII
    • 2
  • Niles Eldredge
    • 3
  1. 1.Department of GeologyUniversity of KansasLawrenceUSA
  2. 2.Geology DepartmentHumboldt State UniversityArcataUSA
  3. 3.Division of PaleontologyThe American Museum of Natural HistoryNew YorkUSA

Personalised recommendations