Obésité

, Volume 9, Issue 3, pp 182–190 | Cite as

Dialogue « intime » entre tissu adipeux et cancer : un rôle crucial dans la progression tumorale

Dossier Thématique / Thematic File

Résumé

Outre les complications métaboliques, il est maintenant reconnu que l’obésité favorise la survenue et affecte le pronostic de nombreux cancers dont le cancer du sein. De nombreux arguments récents montrent que le cancer doit être considéré comme une maladie tissulaire dans laquelle les cellules cancéreuses interagissent de façon dynamique avec les cellules « normales » environnantes. Cette interaction dynamique repose sur un véritable cercle vicieux dans lequel les cellules cancéreuses vont modifier leur microenvironnement qui, en retour, va favoriser la croissance et la dissémination de la tumeur. Dans de nombreux cancers invasifs et en particuliers le cancer du sein, les cellules tumorales vont se retrouver à proximité du tissu adipeux (TA). Les adipocytes matures de part leur activité sécrétoire et métabolique sont tout à fait susceptibles de modifier le comportement de la tumeur. L’objectif de cette revue est donc de décrire dans un premier temps le rôle du microenvironnement dans la progression tumorale. Dans un second temps, nous verrons que les adipocytes péri-tumoraux acquièrent un phénotype spécifique et les mécanismes qui leur permettent d’amplifier l’agressivité tumorale. Dans l’obésité, le TA présente des modifications morphologiques et fonctionnelles qui pourraient le rendre plus enclin à favoriser localement la progression tumorale et expliquer le pronostic défavorable observé chez ces patients. Nous verrons donc dans une dernière partie les arguments précliniques qui permettent d’impliquer un effet paracrine du TA dans le lien entre obésité et aggravation de la progression tumorale chez les sujets obèses.

Mots clés

Obésité Cancer Adipocytes péri-tumoraux Invasion tumorale 

Intimate crosstalk between adipose tissue and cancer: a key role in tumor progression

Abstract

In addition to its metabolic complications, it is now widely recognized that obesity increases the onset and negatively affects the prognosis of many cancers, including breast cancer. Many recent findings show that cancer should be considered as a tissue disease in which cancer cells interact dynamically with “normal” surrounding cells. This dynamic interaction consists on a vicious circle in which the cancer cells activate their microenvironment, which in turn, promote the growth and spread of the tumor. In many invasive cancers, including breast cancer, tumor cells will get in close proximity to adipose tissue (AT). Mature adipocytes through their secretory and metabolic activities are excellent candidates potentially able to modify the behavior of the tumors. The objective of this review is to first describe the role of the microenvironment in tumor progression. In a second step, we will see that the peritumoral adipocytes acquire a specific phenotype and the mechanisms that enable them to enhance tumor aggressiveness. In obesity conditions, AT exhibit morphological and functional changes that could make it more prone to locally promote tumor progression and explain the poor prognosis observed in obese patients. We will see in the last part of the review the preclinical arguments that support an amplified paracrine effect of AT in obesity conditions.

Keywords

Obesity Breast Cancer Tumor-surrounding adipocytes Metastasis Tumor invasion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144: 646–74PubMedCrossRefGoogle Scholar
  2. 2.
    Dirat B, Bochet L, Dabek M, et al (2011) Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res 71: 2455–65Google Scholar
  3. 3.
    Bochet L, Lehuede C, Dauvillier S, et al (2013) Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res 73: 5657–68Google Scholar
  4. 4.
    Wang YY, Lehuede C, Laurent V, et al (2012) Adipose tissue and breast epithelial cells: a dangerous dynamic duo in breast cancer. Cancer Lett 324: 142–51Google Scholar
  5. 5.
    Parekh N, Chandran U, Bandera EV (2012) Obesity in cancer survival. Annu Rev Nutr 32: 311–42PubMedCrossRefGoogle Scholar
  6. 6.
    Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8: 98–101PubMedGoogle Scholar
  7. 7.
    Dolberg DS, Bissell MJ (1984) Inability of Rous sarcoma virus to cause sarcomas in the avian embryo. Nature 309: 552–6PubMedCrossRefGoogle Scholar
  8. 8.
    Mueller MM, Fusenig NE (2004) Friends or foes - bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4: 839–49PubMedCrossRefGoogle Scholar
  9. 9.
    Allen M, Jones JL (2011) Jekyll and Hyde: the role of the microenvironment on the progression of cancer. J Pathol 223: 162–76PubMedGoogle Scholar
  10. 10.
    Taddei ML, Giannoni E, Comito G, Chiarugi P (2013) Microenvironment and tumor cell plasticity: An easy way out. Cancer Lett 341: 80–96PubMedCrossRefGoogle Scholar
  11. 11.
    Vong S, Kalluri R (2011) The role of stromal myofibroblast and extracellular matrix in tumor angiogenesis. Genes Cancer 2: 1139–45PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6: 392–401PubMedCrossRefGoogle Scholar
  13. 13.
    Polanska UM, Orimo A (2013) Carcinoma-associated fibroblasts: non-neoplastic tumour-promoting mesenchymal cells. J Cell Physiol 228: 1651–7PubMedCrossRefGoogle Scholar
  14. 14.
    Franco OE, Shaw AK, Strand DW, Hayward SW (2010) Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol 21: 33–9PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Castells M, Thibault B, Delord JP, Couderc B (2012) Implication of tumor microenvironment in chemoresistance: tumor-associated stromal cells protect tumor cells from cell death. Int J Mol Sci 13: 9545–71PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Shiao SL, Ganesan AP, Rugo HS, Coussens LM (2011) Immune microenvironments in solid tumors: new targets for therapy. Genes Dev 25: 2559–72PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Tchkonia T, TThomou T, Zhu Y, et al (2013) Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab 17: 644–56Google Scholar
  18. 18.
    Ouchi N, Parker JL, Lugus JJ, Walsh K (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11: 85–97PubMedCentralPubMedGoogle Scholar
  19. 19.
    Lafontan M, Langin D (2009) Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res 48: 275–97PubMedCrossRefGoogle Scholar
  20. 20.
    Halberg N, Wernstedt-Asterholm I, Scherer PE (2008) The adipocyte as an endocrine cell. Endocrinol Metab Clin North Am 37: 753–768, x–xiPubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Manabe Y, Toda S, Miyazaki K, Sugihara H (2003) Mature adipocytes, but not preadipocytes, promote the growth of breast carcinoma cells in collagen gel matrix culture through cancerstromal cell interactions. J Pathol 201: 221–8PubMedCrossRefGoogle Scholar
  22. 22.
    Iyengar P, Espina V, Williams TW, et al (2005) Adipocytederived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J Clin Invest 115: 1163–76Google Scholar
  23. 23.
    Andarawewa KL, Motrescu ER, Chenard MP, et al (2005) Stromelysin-3 is a potent negative regulator of adipogenesis participating to cancer cell-adipocyte interaction/crosstalk at the tumor invasive front. Cancer Res 65: 10862–71Google Scholar
  24. 24.
    Finley DS, Calvert VS, Inokuchi J, et al (2009) Periprostatic adipose tissue as a modulator of prostate cancer aggressiveness. J Urol 182: 1621–7Google Scholar
  25. 25.
    Nieman KM, Kenny HA, Penicka CV, et al (2011) Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 17: 1498–503Google Scholar
  26. 26.
    Notarnicola M, Miccolis A, Tutino V, et al (2012) Low levels of lipogenic enzymes in peritumoral adipose tissue of colorectal cancer patients. Lipids 47: 59–63Google Scholar
  27. 27.
    Wagner M, Bjerkvig R, Wiig H, et al (2012) Inflamed tumor-associated adipose tissue is a depot for macrophages that stimulate tumor growth and angiogenesis. Angiogenesis 15: 481–95Google Scholar
  28. 28.
    Gazi E, Gardner P, Lockyer NP, et al (2007) Direct evidence of lipid translocation between adipocytes and prostate cancer cells with imaging FTIR microspectroscopy. J Lipid Res 48: 1846–56Google Scholar
  29. 29.
    Bochet L, Meulle A, Imbert S, et al (2011) Cancer-associated adipocytes promotes breast tumor radioresistance. Biochem Biophys Res Commun 411: 102–6Google Scholar
  30. 30.
    Behan JW, Yun JP, Proektor MP, et al (2009) Adipocytes impair leukemia treatment in mice. Cancer Res 69: 7867–74Google Scholar
  31. 31.
    Park J, Morley TS, Scherer PE (2013) Inhibition of endotrophin, a cleavage product of collagen VI, confers cisplatin sensitivity to tumours. EMBO Mol Med 5: 935–48PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Calle EE, Teras LR, Thun MJ (2005) Obesity and mortality. N Engl J Med 353: 2197–9PubMedCrossRefGoogle Scholar
  33. 33.
    Renehan AG, Tyson M, Egger M, et al (2008) Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371: 569–78Google Scholar
  34. 34.
    Sergentanis TN, Antoniadis AG, Gogas HJ, et al (2013) Obesity and risk of malignant melanoma: a meta-analysis of cohort and case-control studies. Eur J Cancer 49: 642–57Google Scholar
  35. 35.
    Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4: 579–91PubMedCrossRefGoogle Scholar
  36. 36.
    Park J, Euhus DM, Scherer PE (2011) Paracrine and endocrine effects of adipose tissue on cancer development and progression. Endocr Rev 32: 550–70PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Divoux A, Clement K (2011) Architecture and the extracellular matrix: the still unappreciated components of the adipose tissue. Obes Rev 12: e494–503PubMedCrossRefGoogle Scholar
  38. 38.
    Cleary MP, Grande JP, Maihle NJ (2004) Effect of high fat diet on body weight and mammary tumor latency in MMTVTGF-alpha mice. Int J Obes Relat Metab Disord 28: 956–62PubMedCrossRefGoogle Scholar
  39. 39.
    Hursting SD, Dunlap SM, Ford NA, et al (2013) Calorie restriction and cancer prevention: a mechanistic perspective. Cancer Metab 1: 10. doi: 10.1186/2049-3002-1-10.Google Scholar
  40. 40.
    Ribeiro R, Monteiro C, Cunha V, et al (2012) Human periprostatic adipose tissue promotes prostate cancer aggressiveness in vitro. J Exp Clin Cancer Res 31: 32. doi: 10.1186/1756-9966-31-32.Google Scholar
  41. 41.
    Lafontan M (2012) Historical perspectives in fat cell biology: the fat cell as a model for the investigation of hormonal and metabolic pathways. Am J Physiol Cell Physiol 302: C327–59PubMedGoogle Scholar
  42. 42.
    Amemori S, Ootani A, Aoki S, et al (2007) Adipocytes and preadipocytes promote the proliferation of colon cancer cells in vitro. Am J Physiol Gastrointest Liver Physiol 292: G923–9Google Scholar

Copyright information

© Springer-Verlag France 2014

Authors and Affiliations

  1. 1.Institut de Pharmacologie et de Biologie StructuraleCNRS/Université de Toulouse UMR 5089ToulouseFrance
  2. 2.Institut des Maladies Métaboliques et CardiovasculairesINSERM/Université de Toulouse UMR1048Toulouse cedex 4France

Personalised recommendations