Obésité

, Volume 9, Issue 1, pp 42–55

L’adipogenèse des tissus adipeux blancs : influence du microenvironnement

Article / Article

Résumé

L’adipogenèse, ou la formation d’adipocyte à partir d’une cellule progénitrice, est un processus clé dans le maintien de l’expandabilité du tissu adipeux (TA) sous-cutané, en limitant l’accumulation ectopique de lipides impliquée dans les pathologies associées à l’obésité. Cette revue est axée sur le rôle du microenvironnement du TA dans le contrôle de l’adipogenèse. Les acteurs cellulaires, physiques et moléculaires du microenvironnement sont décrits. Leurs implications dans les disparités d’expansion des TA et leurs contributions aux complications de l’obésité sont abordées.

Mots clés

Matrice extracellulaire Développement embryonnaire Cellules immunes Cellules endothéliales Différences territoriales 

Adipogenesis in white adipose tissues: influence of the microenvironment

Abstract

Adipogenesis, or the formation of adipocyte from a progenitor cell, is a key process to maintain subcutaneous adipose tissue (AT) expandability and to limit ectopic lipid accumulation which is implicated in obesity-associated pathologies. This review focuses on the role of AT microenvironment in the control of adipogenesis. The cellular, physical and molecular microenvironment actors are described. Their implications in AT expansion disparities and their contributions to obesity-associated complications are discussed.

Keywords

Extracellular matrix (ECM) Embryonic development Immune cells Endothelial cells Regional differences 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Spalding KL, Arner E, Westermark PO, et al (2008) Dynamics of fat cell turnover in humans. Nature 453:783–787PubMedGoogle Scholar
  2. 2.
    Miranville A, Heeschen C, Sengenes C, et al (2004) Improvement of postnatal neovascularization by human adipose tissuederived stem cells. Circulation 110:349–355PubMedGoogle Scholar
  3. 3.
    Maumus M, Peyrafitte JA, D’Angelo R, et al (2011) Native human adipose stromal cells: localization, morphology and phenotype. Int J Obes (Lond) 35:1141–1153Google Scholar
  4. 4.
    Hirsch J, Batchelor B (1976) Adipose tissue cellularity in human obesity. Clin Endocrinol Metab 5:299–311PubMedGoogle Scholar
  5. 5.
    Rosen ED, MacDougald OA (2006) Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7:885–896PubMedGoogle Scholar
  6. 6.
    Lefterova MI, Lazar MA (2009) New developments in adipogenesis. Trends Endocrinol Metab 20:107–114PubMedGoogle Scholar
  7. 7.
    Cristancho AG, Lazar MA (2011) Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 12:722–734PubMedGoogle Scholar
  8. 8.
    Tang QQ, Lane MD (2012) Adipogenesis: from stem cell to adipocyte. Annu Rev Biochem 81:715–736PubMedGoogle Scholar
  9. 9.
    Kuzawa CW (1998) Adipose tissue in human infancy and childhood: an evolutionary perspective. Am J Phys Anthropol Suppl 27:177–209Google Scholar
  10. 10.
    Hausman GJ, Campion DR, Martin RJ (1980) Search for the adipocyte precursor cell and factors that promote its differentiation. J Lipid Res 21:657–670PubMedGoogle Scholar
  11. 11.
    Poissonnet CM, Burdi AR, Bookstein FL (1983) Growth and development of human adipose tissue during early gestation. Early Hum Dev 8:1–11PubMedGoogle Scholar
  12. 12.
    Poissonnet CM, Burdi AR, Garn SM (1984) The chronology of adipose tissue appearance and distribution in the human fetus. Early Hum Dev 10:1–11PubMedGoogle Scholar
  13. 13.
    Hauner H, Brunner S, Amann-Gassner U (2013) The role of dietary fatty acids for early human adipose tissue growth. Am J Clin Nutr VOL ?? PAGES??Google Scholar
  14. 14.
    Parlee SD, Macdougald OA (2013) Maternal nutrition and risk of obesity in offspring: The Trojan horse of developmental plasticity. Biochim Biophys Acta VOL ?? PAGES??Google Scholar
  15. 15.
    Knittle JL, Timmers K, Ginsberg-Fellner F, et al (1979) The growth of adipose tissue in children and adolescents. Crosssectional and longitudinal studies of adipose cell number and size. J Clin Invest 63:239–246PubMedCentralPubMedGoogle Scholar
  16. 16.
    Knittle JL, Ginsberg-Fellner F, Brown RE (1977) Adipose tissue development in man. Am J Clin Nutr 30:762–766PubMedGoogle Scholar
  17. 17.
    Merklin RJ (1974) Growth and distribution of human fetal brown fat. Anat Rec 178:637–645PubMedGoogle Scholar
  18. 18.
    Nedergaard J, Bengtsson T, Cannon B (2011) Three years with adult human brown adipose tissue. Ann N Y Acad Sci 1212: E20–E36Google Scholar
  19. 19.
    Cypess AM, Lehman S, Williams G, et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517PubMedCentralPubMedGoogle Scholar
  20. 20.
    Wang QA, Tao C, Gupta RK, et al (2013) Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med 19:1338–1344PubMedGoogle Scholar
  21. 21.
    Birsoy K, Berry R, Wang T, et al (2011) Analysis of gene networks in white adipose tissue development reveals a role for ETS2 in adipogenesis. Development 138:4709–4719PubMedCentralPubMedGoogle Scholar
  22. 22.
    Han J, Lee JE, Jin J, et al (2011) The spatiotemporal development of adipose tissue. Development 138:5027–5037PubMedGoogle Scholar
  23. 23.
    Greenwood MR, Hirsch J (1974) Postnatal development of adipocyte cellularity in the normal rat. J Lipid Res 15:474–483PubMedGoogle Scholar
  24. 24.
    Hirsch J, Han PW (1969) Cellularity of rat adipose tissue: effects of growth, starvation, and obesity. J Lipid Res 10:77–82PubMedGoogle Scholar
  25. 25.
    Johnson PR, Zucker LM, Cruce JA, et al (1971) Cellularity of adipose depots in the genetically obese Zucker rat. J Lipid Res 12:706–714PubMedGoogle Scholar
  26. 26.
    Schulz TJ, Tseng YH (2013) Brown adipose tissue: development, metabolism and beyond. Biochem J 453:167–178PubMedGoogle Scholar
  27. 27.
    Atit R, Sgaier SK, Mohamed OA, et al (2006) Beta-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Dev Biol 296:164–176PubMedGoogle Scholar
  28. 28.
    Timmons JA, Wennmalm K, Larsson O, et al (2007) Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc Natl Acad Sci U S A 104:4401–4406PubMedCentralPubMedGoogle Scholar
  29. 29.
    Sanchez-Gurmaches J, Hung CM, Sparks CA, et al (2012) PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell Metab 16:348–362PubMedCentralPubMedGoogle Scholar
  30. 30.
    Billon N, Jolicoeur C, Raff M (2006) Generation and characterization of oligodendrocytes from lineage-selectable embryonic stem cells in vitro. Methods Mol Biol 330:15–32PubMedGoogle Scholar
  31. 31.
    Takashima Y, Era T, Nakao K, et al (2007) Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell 129:1377–1388PubMedGoogle Scholar
  32. 32.
    Billon N, Iannarelli P, Monteiro MC, et al (2007) The generation of adipocytes by the neural crest. Development 134:2283–2292PubMedGoogle Scholar
  33. 33.
    Seale P, Bjork B, Yang W, et al (2008) PRDM16 controls a brown fat/skeletal muscle switch. Nature 454:961–967PubMedCentralPubMedGoogle Scholar
  34. 34.
    Petrovic N, Walden TB, Shabalina IG, et al (2010) Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285:7153–7164PubMedCentralPubMedGoogle Scholar
  35. 35.
    Wu J, Bostrom P, Sparks LM, et al (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–376PubMedCentralPubMedGoogle Scholar
  36. 36.
    Schulz TJ, Huang TL, Tran TT, et al (2011) Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc Natl Acad Sci U S A 108:143–148PubMedCentralPubMedGoogle Scholar
  37. 37.
    Lidell ME, Betz MJ, Dahlqvist Leinhard O, et al (2013) Evidence for two types of brown adipose tissue in humans. Nat Med 19:631–634PubMedGoogle Scholar
  38. 38.
    Sharp LZ, Shinoda K, Ohno H, et al (2012) Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS One 7:e49452PubMedCentralPubMedGoogle Scholar
  39. 39.
    Cannon B, Nedergaard J (2012) Cell biology: Neither brown nor white. Nature 488:286–287PubMedGoogle Scholar
  40. 40.
    Cinti S (2011) Between brown and white: novel aspects of adipocyte differentiation. Ann Med 43:104–115PubMedGoogle Scholar
  41. 41.
    Gesta S, Bluher M, Yamamoto Y, et al (2006) Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc Natl Acad Sci U S A 103:6676–6681PubMedCentralPubMedGoogle Scholar
  42. 42.
    Liu W, Shan T, Yang X, et al (2013) A heterogeneous lineage origin underlies the phenotypic and molecular differences of white and beige adipocytes. J Cell Sci 126:3527–3532PubMedGoogle Scholar
  43. 43.
    Tchkonia T, Lenburg M, Thomou T, et al (2007) Identification of depot-specific human fat cell progenitors through distinct expression profiles and developmental gene patterns. Am J Physiol Endocrinol Metab 292:E298–E307PubMedGoogle Scholar
  44. 44.
    Karastergiou K, Fried SK, Xie H, et al (2012) Distinct developmental signatures of human abdominal and gluteal subcutaneous adipose tissue depots. J Clin Endocrinol Metab 98:362–371PubMedCentralPubMedGoogle Scholar
  45. 45.
    Jones JR, Barrick C, Kim KA, et al (2005) Deletion of PPARgamma in adipose tissues of mice protects against high fat dietinduced obesity and insulin resistance. Proc Natl Acad Sci U S A 102:6207–6212PubMedCentralPubMedGoogle Scholar
  46. 46.
    Barak Y, Nelson MC, Ong ES, et al (1999) PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell 4:585–595PubMedGoogle Scholar
  47. 47.
    Barroso I, Gurnell M, Crowley VE, et al (1999) Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402:880–883PubMedGoogle Scholar
  48. 48.
    Beamer BA, Yen CJ, Andersen RE, et al (1998) Association of the Pro12Ala variant in the peroxisome proliferator-activated receptor-gamma2 gene with obesity in two Caucasian populations. Diabetes 47:1806–1808PubMedGoogle Scholar
  49. 49.
    Deeb SS, Fajas L, Nemoto M, et al (1998) A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet 20:284–287PubMedGoogle Scholar
  50. 50.
    Wang ND, Finegold MJ, Bradley A, et al (1995) Impaired energy homeostasis in C/EBP alpha knockout mice. Science 269:1108–1112PubMedGoogle Scholar
  51. 51.
    Millward CA, Heaney JD, Sinasac DS, et al (2007) Mice with a deletion in the gene for CCAAT/enhancer-binding protein beta are protected against diet-induced obesity. Diabetes 56:161–167PubMedCentralPubMedGoogle Scholar
  52. 52.
    Tanaka T, Yoshida N, Kishimoto T, et al (1997) Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. Embo J 16:7432–7443PubMedCentralPubMedGoogle Scholar
  53. 53.
    Shimomura I, Hammer RE, Richardson JA, et al (1998) Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev 12:3182–3194PubMedCentralPubMedGoogle Scholar
  54. 54.
    Bjorntorp P (1990) “Portal” adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis 10:493–496PubMedGoogle Scholar
  55. 55.
    Masuzaki H, Paterson J, Shinyama H, et al (2001) A transgenic model of visceral obesity and the metabolic syndrome. Science 294:2166–2170PubMedGoogle Scholar
  56. 56.
    Jensen MD, Haymond MW, Rizza RA, et al (1989) Influence of body fat distribution on free fatty acid metabolism in obesity. J Clin Invest 83:1168–1173PubMedCentralPubMedGoogle Scholar
  57. 57.
    Manolopoulos KN, Karpe F, Frayn KN (2010) Gluteofemoral body fat as a determinant of metabolic health. Int J Obes (Lond) 34:949–959Google Scholar
  58. 58.
    Lemieux S, Despres JP, Moorjani S, et al (1994) Are gender differences in cardiovascular disease risk factors explained by the level of visceral adipose tissue? Diabetologia 37:757–764PubMedGoogle Scholar
  59. 59.
    Kelley DE, Thaete FL, Troost F, et al (2000) Subdivisions of subcutaneous abdominal adipose tissue and insulin resistance. Am J Physiol Endocrinol Metab 278:E941–E948PubMedGoogle Scholar
  60. 60.
    Tordjman J, Divoux A, Prifti E, et al (2012) Structural and inflammatory heterogeneity in subcutaneous adipose tissue: relation with liver histopathology in morbid obesity. J Hepatol 56:1152–1158PubMedGoogle Scholar
  61. 61.
    Montague CT, Prins JB, Sanders L, et al (1998) Depot-related gene expression in human subcutaneous and omental adipocytes. Diabetes 47:1384–1391PubMedGoogle Scholar
  62. 62.
    Livingston JN, Cuatrecasa P, Lockwood DH (1972) Insulin insensitivity of large fat cells. Science 177:626–628PubMedGoogle Scholar
  63. 63.
    Joe AW, Yi L, Even Y, et al (2009) Depot-specific differences in adipogenic progenitor abundance and proliferative response to high-fat diet. Stem Cells 27:2563–2570PubMedGoogle Scholar
  64. 64.
    Drolet R, Richard C, Sniderman AD, et al (2008) Hypertrophy and hyperplasia of abdominal adipose tissues in women. Int J Obes (Lond) 32:283–291Google Scholar
  65. 65.
    Arner P, Andersson DP, Thorne A, et al (2013) Variations in the size of the major omentum are primarily determined by fat cell number. J Clin Endocrinol Metab 98:E897–E901PubMedGoogle Scholar
  66. 66.
    Tchernof A, Labrie F (2004) Dehydroepiandrosterone, obesity and cardiovascular disease risk: a review of human studies. Eur J Endocrinol 151:1–14PubMedGoogle Scholar
  67. 67.
    Resi V, Basu S, Haghiac M, et al (2012) Molecular inflammation and adipose tissue matrix remodeling precede physiological adaptations to pregnancy. Am J Physiol Endocrinol Metab 303:E832–E840PubMedCentralPubMedGoogle Scholar
  68. 68.
    Tchoukalova YD, Koutsari C, Karpyak MV, et al (2008) Subcutaneous adipocyte size and body fat distribution. Am J Clin Nutr 87:56–63PubMedGoogle Scholar
  69. 69.
    Tchoukalova YD, Votruba SB, Tchkonia T, et al (2010) Regional differences in cellular mechanisms of adipose tissue gain with overfeeding. Proc Natl Acad Sci U S A 107:18226–18231PubMedCentralPubMedGoogle Scholar
  70. 70.
    Alligier M, Meugnier E, Debard C, et al (2012) Subcutaneous adipose tissue remodeling during the initial phase of weight gain induced by overfeeding in humans. J Clin Endocrinol Metab 97:E183–E192PubMedGoogle Scholar
  71. 71.
    Alligier M, Gabert L, Meugnier E, et al (2013) Visceral fat accumulation during lipid overfeeding is related to subcutaneous adipose tissue characteristics in healthy men. J Clin Endocrinol Metab 98:802–810PubMedGoogle Scholar
  72. 72.
    Spiegelman BM (1998) PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47:507–514PubMedGoogle Scholar
  73. 73.
    Hallakou S, Doare L, Foufelle F, et al (1997) Pioglitazone induces in vivo adipocyte differentiation in the obese Zucker fa/fa rat. Diabetes 46:1393–1399PubMedGoogle Scholar
  74. 74.
    Kim JY, van de Wall E, Laplante M, et al (2007) Obesityassociated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest 117:2621–2637PubMedCentralPubMedGoogle Scholar
  75. 75.
    Miyazaki Y, Mahankali A, Matsuda M, et al (2002) Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab 87:2784–2791PubMedGoogle Scholar
  76. 76.
    Macotela Y, Emanuelli B, Mori MA, et al (2012) Intrinsic differences in adipocyte precursor cells from different white fat depots. Diabetes 61:1691–1699PubMedCentralPubMedGoogle Scholar
  77. 77.
    Tchkonia T, Giorgadze N, Pirtskhalava T, et al (2006) Fat depotspecific characteristics are retained in strains derived from single human preadipocytes. Diabetes 55:2571–2578PubMedGoogle Scholar
  78. 78.
    Tchoukalova YD, Koutsari C, Votruba SB, et al (2010) Sex- and depot-dependent differences in adipogenesis in normal-weight humans. Obesity (Silver Spring) 18:1875–1880Google Scholar
  79. 79.
    Lefebvre AM, Laville M, Vega N, et al (1998) Depot-specific differences in adipose tissue gene expression in lean and obese subjects. Diabetes 47:98–103PubMedGoogle Scholar
  80. 80.
    Walker GE, Marzullo P, Verti B, et al (2008) Subcutaneous abdominal adipose tissue subcompartments: potential role in rosiglitazone effects. Obesity (Silver Spring) 16:1983–1991Google Scholar
  81. 81.
    Boulet N, Esteve D, Bouloumie A, et al (2012) Cellular heterogeneity in superficial and deep subcutaneous adipose tissues in overweight patients. J Physiol Biochem 69:575–583PubMedGoogle Scholar
  82. 82.
    Van Harmelen V, Rohrig K, Hauner H (2004) Comparison of proliferation and differentiation capacity of human adipocyte precursor cells from the omental and subcutaneous adipose tissue depot of obese subjects. Metabolism 53:632–637PubMedGoogle Scholar
  83. 83.
    Shahparaki A, Grunder L, Sorisky A (2002) Comparison of human abdominal subcutaneous versus omental preadipocyte differentiation in primary culture. Metabolism 51:1211–1215PubMedGoogle Scholar
  84. 84.
    van Harmelen V, Dicker A, Ryden M, et al (2002) Increased lipolysis and decreased leptin production by human omental as compared with subcutaneous preadipocytes. Diabetes 51:2029–2036PubMedGoogle Scholar
  85. 85.
    Baglioni S, Francalanci M, Squecco R, et al (2009) Characterization of human adult stem-cell populations isolated from visceral and subcutaneous adipose tissue. Faseb J 23:3494–3505PubMedGoogle Scholar
  86. 86.
    Duffaut C, Zakaroff-Girard A, Bourlier V, et al (2009) Interplay between human adipocytes and T lymphocytes in obesity: CCL20 as an adipochemokine and T lymphocytes as lipogenic modulators. Arterioscler Thromb Vasc Biol 29:1608–1614PubMedGoogle Scholar
  87. 87.
    Bourlier V, Zakaroff-Girard A, Miranville A, et al (2008) Remodeling phenotype of human subcutaneous adipose tissue macrophages. Circulation 117:806–815PubMedGoogle Scholar
  88. 88.
    Fruhbeck G, Aguado M, Gomez-Ambrosi J, et al (1998) Lipolytic effect of in vivo leptin administration on adipocytes of lean and ob/ob mice, but not db/db mice. Biochem Biophys Res Commun 250:99–102PubMedGoogle Scholar
  89. 89.
    Fruhbeck G, Aguado M, Martinez JA (1997) In vitro lipolytic effect of leptin on mouse adipocytes: evidence for a possible autocrine/paracrine role of leptin. Biochem Biophys Res Commun 240:590–594PubMedGoogle Scholar
  90. 90.
    Bai Y, Zhang S, Kim KS, et al (1996) Obese gene expression alters the ability of 30A5 preadipocytes to respond to lipogenic hormones. J Biol Chem 271:13939–13942PubMedGoogle Scholar
  91. 91.
    Harris RB (1998) Acute and chronic effects of leptin on glucose utilization in lean mice. Biochem Biophys Res Commun 245:502–509PubMedGoogle Scholar
  92. 92.
    Zhang HH, Kumar S, Barnett AH, et al (1999) Intrinsic sitespecific differences in the expression of leptin in human adipocytes and its autocrine effects on glucose uptake. J Clin Endocrinol Metab 84:2550–2556PubMedGoogle Scholar
  93. 93.
    Tchernof A, Belanger C, Morisset AS, et al (2006) Regional differences in adipose tissue metabolism in women: minor effect of obesity and body fat distribution. Diabetes 55:1353–1360PubMedGoogle Scholar
  94. 94.
    Reynisdottir S, Dauzats M, Thorne A, et al (1997) Comparison of hormone-sensitive lipase activity in visceral and subcutaneous human adipose tissue. J Clin Endocrinol Metab 82:4162–4166PubMedGoogle Scholar
  95. 95.
    Machinal-Quelin F, Dieudonne MN, Leneveu MC, et al (2002) Proadipogenic effect of leptin on rat preadipocytes in vitro: activation of MAPK and STAT3 signaling pathways. Am J Physiol Cell Physiol 282:C853–C863PubMedGoogle Scholar
  96. 96.
    Wagoner B, Hausman DB, Harris RB (2006) Direct and indirect effects of leptin on preadipocyte proliferation and differentiation. Am J Physiol Regul Integr Comp Physiol 290:R1557–R1564PubMedGoogle Scholar
  97. 97.
    Aprath-Husmann I, Rohrig K, Gottschling-Zeller H, et al (2001) Effects of leptin on the differentiation and metabolism of human adipocytes. Int J Obes Relat Metab Disord 25:1465–1470PubMedGoogle Scholar
  98. 98.
    Bauche IB, El Mkadem SA, Pottier AM, et al (2007) Overexpression of adiponectin targeted to adipose tissue in transgenic mice: impaired adipocyte differentiation. Endocrinology 148:1539–1549PubMedGoogle Scholar
  99. 99.
    Yokota T, Meka CS, Medina KL, et al (2002) Paracrine regulation of fat cell formation in bone marrow cultures via adiponectin and prostaglandins. J Clin Invest 109:1303–1310PubMedCentralPubMedGoogle Scholar
  100. 100.
    Masaki T, Chiba S, Yasuda T, et al (2003) Peripheral, but not central, administration of adiponectin reduces visceral adiposity and upregulates the expression of uncoupling protein in agouti yellow (Ay/a) obese mice. Diabetes 52:2266–2273PubMedGoogle Scholar
  101. 101.
    Fu Y, Luo N, Klein RL, et al (2005) Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J Lipid Res 46:1369–1379PubMedGoogle Scholar
  102. 102.
    Medici D, Shore EM, Lounev VY, et al (2010) Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med 16:1400–1406PubMedCentralPubMedGoogle Scholar
  103. 103.
    Tran KV, Gealekman O, Frontini A, et al (2012) The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metab 15:222–229PubMedCentralPubMedGoogle Scholar
  104. 104.
    Gupta RK, Mepani RJ, Kleiner S, et al (2012) Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metab 15:230–239PubMedCentralPubMedGoogle Scholar
  105. 105.
    Frontini A, Giordano A, Cinti S (2012) Endothelial cells of adipose tissues: a niche of adipogenesis. Cell Cycle 11:2765–2766PubMedCentralPubMedGoogle Scholar
  106. 106.
    Tang W, Zeve D, Suh JM, et al (2008) White fat progenitor cells reside in the adipose vasculature. Science 322:583–586PubMedCentralPubMedGoogle Scholar
  107. 107.
    Crisan M, Yap S, Casteilla L, et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313PubMedGoogle Scholar
  108. 108.
    Crisan M, Chen CW, Corselli M, et al (2009) Perivascular multipotent progenitor cells in human organs. Ann N Y Acad Sci 1176:118–123PubMedGoogle Scholar
  109. 109.
    Weisberg SP, McCann D, Desai M, et al (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808PubMedCentralPubMedGoogle Scholar
  110. 110.
    Anderson EK, Gutierrez DA, Hasty AH (2010) Adipose tissue recruitment of leukocytes. Curr Opin Lipidol 21:172–177PubMedCentralPubMedGoogle Scholar
  111. 111.
    Xu H, Barnes GT, Yang Q, et al (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830PubMedCentralPubMedGoogle Scholar
  112. 112.
    Kintscher U, Hartge M, Hess K, et al (2008) T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler Thromb Vasc Biol 28:1304–1310PubMedGoogle Scholar
  113. 113.
    Lacasa D, Taleb S, Keophiphath M, et al (2007) Macrophagesecreted factors impair human adipogenesis: involvement of proinflammatory state in preadipocytes. Endocrinology 148: 868–877PubMedGoogle Scholar
  114. 114.
    Maumus M, Sengenes C, Decaunes P, et al (2008) Evidence of in situ proliferation of adult adipose tissue-derived progenitor cells: influence of fat mass microenvironment and growth. J Clin Endocrinol Metab 93:4098–4106PubMedGoogle Scholar
  115. 115.
    Couturier J, Patel SG, Iyer D, et al (2010) Human monocytes accelerate proliferation and blunt differentiation of preadipocytes in association with suppression of C/EBPAlpha mRNA. Obesity (Silver Spring) 20:253–262Google Scholar
  116. 116.
    Ide J, Gagnon A, Molgat AS, et al (2011) Macrophageconditioned medium inhibits the activation of cyclin-dependent kinase 2 by adipogenic inducers in 3T3-L1 preadipocytes. J Cell Physiol 226:2297–2306PubMedGoogle Scholar
  117. 117.
    Gray SL, Nora ED, Grosse J, et al (2006) Leptin deficiency unmasks the deleterious effects of impaired peroxisome proliferator-activated receptor gamma function (P465L PPARgamma) in mice. Diabetes 55:2669–2677PubMedGoogle Scholar
  118. 118.
    Sethi JK, Vidal-Puig AJ (2007) Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res 48:1253–1262PubMedGoogle Scholar
  119. 119.
    Isakson P, Hammarstedt A, Gustafson B, et al (2009) Impaired preadipocyte differentiation in human abdominal obesity: role of Wnt, tumor necrosis factor-alpha, and inflammation. Diabetes 58:1550–1557PubMedCentralPubMedGoogle Scholar
  120. 120.
    Gustafson B, Smith U (2006) Cytokines promote Wnt signaling and inflammation and impair the normal differentiation and lipid accumulation in 3T3-L1 preadipocytes. J Biol Chem 281: 9507–9516PubMedGoogle Scholar
  121. 121.
    Winer S, Chan Y, Paltser G, et al (2009) Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med 15:921–929PubMedCentralPubMedGoogle Scholar
  122. 122.
    Duffaut C, Galitzky J, Lafontan M, et al (2009) Unexpected trafficking of immune cells within the adipose tissue during the onset of obesity. Biochem Biophys Res Commun 384:482–485PubMedGoogle Scholar
  123. 123.
    Zeyda M, Huber J, Prager G, et al (2010) Inflammation correlates with markers of T-cell subsets including regulatory T cells in adipose tissue from obese patients. Obesity (Silver Spring) 19:743–748Google Scholar
  124. 124.
    Curat CA, Miranville A, Sengenes C, et al (2004) From blood monocytes to adipose tissue-resident macrophages: induction of diapedesis by human mature adipocytes. Diabetes 53:1285–1292PubMedGoogle Scholar
  125. 125.
    O’Rourke RW, Metcalf MD, White AE, et al (2009) Depotspecific differences in inflammatory mediators and a role for NK cells and IFN-gamma in inflammation in human adipose tissue. Int J Obes (Lond) 33:978–990Google Scholar
  126. 126.
    Salles J, Tardif N, Landrier JF, et al (2012) TNFalpha gene knockout differentially affects lipid deposition in liver and skeletal muscle of high-fat-diet mice. J Nutr Biochem 23:1685–1693PubMedGoogle Scholar
  127. 127.
    Vidal C, Bermeo S, Li W, et al (2012) Interferon gamma inhibits adipogenesis in vitro and prevents marrow fat infiltration in oophorectomized mice. Stem Cells 30:1042–1048PubMedGoogle Scholar
  128. 128.
    Wong N, Fam BC, Cempako GR, et al (2012) Deficiency in interferon-gamma results in reduced body weight and better glucose tolerance in mice. Endocrinology 152:3690–3699Google Scholar
  129. 129.
    Bertola A, Ciucci T, Rousseau D, et al (2012) Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes 61:2238–2247PubMedCentralPubMedGoogle Scholar
  130. 130.
    Winer S, Paltser G, Chan Y, et al (2009) Obesity predisposes to Th17 bias. Eur J Immunol 39:2629–2635PubMedGoogle Scholar
  131. 131.
    Zuniga LA, Shen WJ, Joyce-Shaikh B, et al (2010) IL-17 regulates adipogenesis, glucose homeostasis, and obesity. J Immunol 185:6947–6959PubMedCentralPubMedGoogle Scholar
  132. 132.
    Shin JH, Shin DW, Noh M (2009) Interleukin-17A inhibits adipocyte differentiation in human mesenchymal stem cells and regulates pro-inflammatory responses in adipocytes. Biochem Pharmacol 77:1835–1844PubMedGoogle Scholar
  133. 133.
    Gagnon A, Foster C, Landry A, et al (2013) The role of interleukin 1beta in the anti-adipogenic action of macrophages on human preadipocytes. J Endocrinol 217:197–206PubMedGoogle Scholar
  134. 134.
    van Asseldonk EJ, Stienstra R, Koenen TB, et al (2010) The effect of the interleukin-1 cytokine family members IL-1F6 and IL-1F8 on adipocyte differentiation. Obesity (Silver Spring) 18:2234–2236Google Scholar
  135. 135.
    Baena-Fustegueras JA, Pardina E, Balada E, et al (2013) Soluble CD40 ligand in morbidly obese patients: effect of body mass index on recovery to normal levels after gastric bypass surgery. JAMA Surg 148:151–156PubMedGoogle Scholar
  136. 136.
    Missiou A, Wolf D, Platzer I, et al (2010) CD40L induces inflammation and adipogenesis in adipose cells—a potential link between metabolic and cardiovascular disease. Thromb Haemost 103:788–796PubMedGoogle Scholar
  137. 137.
    Poggi M, Engel D, Christ A, et al (2011) CD40L deficiency ameliorates adipose tissue inflammation and metabolic manifestations of obesity in mice. Arterioscler Thromb Vasc Biol 31:2251–2260PubMedGoogle Scholar
  138. 138.
    Guo CA, Kogan S, Amano SU, et al (2013) CD40 deficiency in mice exacerbates obesity-induced adipose tissue inflammation, hepatic steatosis, and insulin resistance. Am J Physiol Endocrinol Metab 304:E951–E963PubMedGoogle Scholar
  139. 139.
    Napolitano L (1963) The Differentiation of White Adipose Cells. An Electron Microscope Study. J Cell Biol 18:663–679Google Scholar
  140. 140.
    Khan T, Muise ES, Iyengar P, et al (2009) Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol Cell Biol 29:1575–1591PubMedCentralPubMedGoogle Scholar
  141. 141.
    Mejhert N, Wilfling F, Esteve D, et al (2013) Semaphorin 3C is a novel adipokine linked to extracellular matrix composition. Diabetologia 56:1792–1801PubMedGoogle Scholar
  142. 142.
    Chavey C, Mari B, Monthouel MN, et al (2003) Matrix metalloproteinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differentiation. J Biol Chem 278:11888–11896PubMedGoogle Scholar
  143. 143.
    Bouloumie A, Sengenes C, Portolan G, et al (2001) Adipocyte produces matrix metalloproteinases 2 and 9: involvement in adipose differentiation. Diabetes 50:2080–2086PubMedGoogle Scholar
  144. 144.
    Bourlier V, Zakaroff-Girard A, De Barros S, et al (2005) Protease inhibitor treatments reveal specific involvement of matrix metalloproteinase-9 in human adipocyte differentiation. J Pharmacol Exp Ther 312:1272–1279PubMedGoogle Scholar
  145. 145.
    Chun TH, Hotary KB, Sabeh F, et al (2006) A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell 125:577–591PubMedGoogle Scholar
  146. 146.
    Bourlier V, Sengenes C, Zakaroff-Girard A, et al (2012) TGFbeta family members are key mediators in the induction of myofibroblast phenotype of human adipose tissue progenitor cells by macrophages. PLoS One 7:e31274PubMedCentralPubMedGoogle Scholar
  147. 147.
    Zaragosi LE, Wdziekonski B, Villageois P, et al (2010) Activin a plays a critical role in proliferation and differentiation of human adipose progenitors. Diabetes 59:2513–2521PubMedCentralPubMedGoogle Scholar
  148. 148.
    Keophiphath M, Achard V, Henegar C, et al (2009) Macrophagesecreted factors promote a profibrotic phenotype in human preadipocytes. Mol Endocrinol 23:11–24PubMedGoogle Scholar
  149. 149.
    Trayhurn P (2013) Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev 93:1–21PubMedGoogle Scholar
  150. 150.
    Goossens GH, Blaak EE (2012) Adipose tissue oxygen tension: implications for chronic metabolic and inflammatory diseases. Curr Opin Clin Nutr Metab Care 15:539–546PubMedGoogle Scholar
  151. 151.
    Liu L, Clipstone NA (2008) Prostaglandin F2alpha induces the normoxic activation of the hypoxia-inducible factor-1 transcription factor in differentiating 3T3-L1 preadipocytes: Potential role in the regulation of adipogenesis. J Cell Biochem 105:89–98PubMedCentralPubMedGoogle Scholar
  152. 152.
    Floyd ZE, Kilroy G, Wu X, et al (2007) Effects of prolyl hydroxylase inhibitors on adipogenesis and hypoxia inducible factor 1 alpha levels under normoxic conditions. J Cell Biochem 101:1545–1557PubMedGoogle Scholar
  153. 153.
    Tang QQ, Lane MD (2000) Role of C/EBP homologous protein (CHOP-10) in the programmed activation of CCAAT/enhancerbinding protein-beta during adipogenesis. Proc Natl Acad Sci USA 97:12446–12450PubMedCentralPubMedGoogle Scholar
  154. 154.
    Ariyama Y, Shimizu H, Satoh T, et al (2007) Chop-deficient mice showed increased adiposity but no glucose intolerance. Obesity (Silver Spring) 15:1647–1656Google Scholar
  155. 155.
    McGregor RA, Choi MS (2011) microRNAs in the regulation of adipogenesis and obesity. Curr Mol Med 11:304–316PubMedCentralPubMedGoogle Scholar
  156. 156.
    Kajimoto K, Naraba H, Iwai N (2006) MicroRNA and 3T3-L1 pre-adipocyte differentiation. Rna 12:1626–1632PubMedCentralPubMedGoogle Scholar
  157. 157.
    Esau C, Kang X, Peralta E, et al (2004) MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279:52361–52365PubMedGoogle Scholar
  158. 158.
    Xie H, Lim B, Lodish HF (2009) MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 58:1050–1057PubMedCentralPubMedGoogle Scholar
  159. 159.
    Ortega FJ, Moreno-Navarrete JM, Pardo G, et al (2010) MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS One 5:e9022PubMedCentralPubMedGoogle Scholar
  160. 160.
    Smith PJ, Wise LS, Berkowitz R, et al (1988) Insulin-like growth factor-I is an essential regulator of the differentiation of 3T3-L1 adipocytes. J Biol Chem 263:9402–9408PubMedGoogle Scholar
  161. 161.
    Gagnon A, Sorisky A (1998) The effect of glucose concentration on insulin-induced 3T3-L1 adipose cell differentiation. Obes Res 6:157–163PubMedGoogle Scholar
  162. 162.
    Accili D, Taylor SI (1991) Targeted inactivation of the insulin receptor gene in mouse 3T3-L1 fibroblasts via homologous recombination. Proc Natl Acad Sci U S A 88:4708–4712PubMedCentralPubMedGoogle Scholar
  163. 163.
    Cinti S, Eberbach S, Castellucci M, et al (1998) Lack of insulin receptors affects the formation of white adipose tissue in mice. A morphometric and ultrastructural analysis. Diabetologia 41:171–177PubMedGoogle Scholar
  164. 164.
    Miki H, Yamauchi T, Suzuki R, et al (2001) Essential role of insulin receptor substrate 1 (IRS-1) and IRS-2 in adipocyte differentiation. Mol Cell Biol 21:2521–2532PubMedCentralPubMedGoogle Scholar
  165. 165.
    Laustsen PG, Michael MD, Crute BE, et al (2002) Lipoatrophic diabetes in Irs1(-/-)/Irs3(-/-) double knockout mice. Genes Dev 16:3213–3222PubMedCentralPubMedGoogle Scholar
  166. 166.
    Nakae J, Kitamura T, Kitamura Y, et al (2003) The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev Cell 4:119–129PubMedGoogle Scholar
  167. 167.
    Klemm DJ, Leitner JW, Watson P, et al (2001) Insulin-induced adipocyte differentiation. Activation of CREB rescues adipogenesis from the arrest caused by inhibition of prenylation. J Biol Chem 276:28430–28435PubMedGoogle Scholar
  168. 168.
    Scavo LM, Karas M, Murray M, et al (2004) Insulin-like growth factor-I stimulates both cell growth and lipogenesis during differentiation of human mesenchymal stem cells into adipocytes. J Clin Endocrinol Metab 89:3543–3553PubMedGoogle Scholar
  169. 169.
    Rimm AA, Werner LH, Yserloo BV, et al (1975) Relationship of ovesity and disease in 73,532 weight-conscious women. Public Health Rep 90:44–51PubMedCentralPubMedGoogle Scholar
  170. 170.
    Ritz P, Dumas JF, Salle A, et al (2002) [Thyroid hormones and obesity]. Ann Endocrinol (Paris) 63:135–139Google Scholar
  171. 171.
    Flores-Delgado G, Marsch-Moreno M, Kuri-Harcuch W (1987) Thyroid hormone stimulates adipocyte differentiation of 3T3 cells. Mol Cell Biochem 76:35–43PubMedGoogle Scholar
  172. 172.
    Hauner H, Entenmann G, Wabitsch M, et al (1989) Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium. J Clin Invest 84:1663–1670PubMedCentralPubMedGoogle Scholar
  173. 173.
    Mishra A, Zhu XG, Ge K, et al (2010) Adipogenesis is differentially impaired by thyroid hormone receptor mutant isoforms. J Mol Endocrinol 44:247–255PubMedCentralPubMedGoogle Scholar
  174. 174.
    Ying H, Araki O, Furuya F, et al (2007) Impaired adipogenesis caused by a mutated thyroid hormone alpha1 receptor. Mol Cell Biol 27:2359–2371PubMedCentralPubMedGoogle Scholar
  175. 175.
    Gupta V, Bhasin S, Guo W, et al (2008) Effects of dihydrotestosterone on differentiation and proliferation of human mesenchymal stem cells and preadipocytes. Mol Cell Endocrinol 296:32–40PubMedCentralPubMedGoogle Scholar
  176. 176.
    Blouin K, Nadeau M, Perreault M, et al (2010) Effects of androgens on adipocyte differentiation and adipose tissue explant metabolism in men and women. Clin Endocrinol (Oxf) 72: 176–188Google Scholar
  177. 177.
    Chen JQ, Brown TR, Russo J (2009) Regulation of energy metabolism pathways by estrogens and estrogenic chemicals and potential implications in obesity associated with increased exposure to endocrine disruptors. Biochim Biophys Acta 1793: 1128–1143PubMedCentralPubMedGoogle Scholar
  178. 178.
    Dieudonne MN, Leneveu MC, Giudicelli Y, et al (2004) Evidence for functional estrogen receptors alpha and beta in human adipose cells: regional specificities and regulation by estrogens. Am J Physiol Cell Physiol 286:C655–C661PubMedGoogle Scholar
  179. 179.
    Cao Z, Umek RM, McKnight SL (1991) Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev 5:1538–1552PubMedGoogle Scholar
  180. 180.
    Wu Z, Bucher NL, Farmer SR (1996) Induction of peroxisome proliferator-activated receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPbeta, C/EBPdelta, and glucocorticoids. Mol Cell Biol 16:4128–4136PubMedCentralPubMedGoogle Scholar
  181. 181.
    MacDougald OA, Mandrup S (2002) Adipogenesis: forces that tip the scales. Trends Endocrinol Metab 13:5–11PubMedGoogle Scholar
  182. 182.
    Napolitano A, Voice MW, Edwards CR, et al (1998) 11Betahydroxysteroid dehydrogenase 1 in adipocytes: expression is differentiation-dependent and hormonally regulated. J Steroid Biochem Mol Biol 64:251–260PubMedGoogle Scholar
  183. 183.
    Bujalska IJ, Kumar S, Stewart PM (1997) Does central obesity reflect “Cushing’s disease of the omentum”? Lancet 349:1210–1213PubMedGoogle Scholar
  184. 184.
    Galitzky J, Bouloumie A (2013) Human visceral-fat-specific glucocorticoid tuning of adipogenesis. Cell Metab 18:3–5PubMedGoogle Scholar
  185. 185.
    Lindroos J, Husa J, Mitterer G, et al (2013) Human but not mouse adipogenesis is critically dependent on LMO3. Cell Metab 18:62–74PubMedCentralPubMedGoogle Scholar
  186. 186.
    Vassaux G, Gaillard D, Ailhaud G, et al (1992) Prostacyclin is a specific effector of adipose cell differentiation. Its dual role as a cAMP- and Ca(2+)-elevating agent. J Biol Chem 267:11092–11097PubMedGoogle Scholar
  187. 187.
    Vassaux G, Gaillard D, Darimont C, et al (1992) Differential response of preadipocytes and adipocytes to prostacyclin and prostaglandin E2: physiological implications. Endocrinology 131:2393–2398PubMedGoogle Scholar
  188. 188.
    Fujimori K (2012) Prostaglandins as PPARgamma Modulators in Adipogenesis. PPAR Res 2012:527607PubMedCentralPubMedGoogle Scholar
  189. 189.
    Aubert J, Saint-Marc P, Belmonte N, et al (2000) Prostacyclin IP receptor up-regulates the early expression of C/EBPbeta and C/EBPdelta in preadipose cells. Mol Cell Endocrinol 160: 149–156PubMedGoogle Scholar
  190. 190.
    Ailhaud G (1999) Cross talk between adipocytes and their precursors: relationships with adipose tissue development and blood pressure. Ann N Y Acad Sci 892:127–133PubMedGoogle Scholar
  191. 191.
    Forman BM, Tontonoz P, Chen J, et al (1995) 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83:803–812PubMedGoogle Scholar
  192. 192.
    Kliewer SA, Lenhard JM, Willson TM, et al (1995) A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell 83:813–819PubMedGoogle Scholar
  193. 193.
    Fujimori K, Maruyama T, Kamauchi S, et al (2011) Activation of adipogenesis by lipocalin-type prostaglandin D synthasegenerated Delta(1)(2)-PGJ(2) acting through PPARgammadependent and independent pathways. Gene 505:46–52Google Scholar
  194. 194.
    Nosjean O, Boutin JA (2002) Natural ligands of PPARgamma: are prostaglandin J(2) derivatives really playing the part? Cell Signal 14:573–583PubMedGoogle Scholar
  195. 195.
    Reginato MJ, Krakow SL, Bailey ST, et al (1998) Prostaglandins promote and block adipogenesis through opposing effects on peroxisome proliferator-activated receptor gamma. J Biol Chem 273:1855–1858PubMedGoogle Scholar
  196. 196.
    Tsuboi H, Sugimoto Y, Kainoh T, et al (2004) Prostanoid EP4 receptor is involved in suppression of 3T3-L1 adipocyte differentiation. Biochem Biophys Res Commun 322:1066–1072PubMedGoogle Scholar
  197. 197.
    Volat FE, Pointud JC, Pastel E, et al (2011) Depressed levels of prostaglandin F2alpha in mice lacking Akr1b7 increase basal adiposity and predispose to diet-induced obesity. Diabetes 61:2796–2806Google Scholar
  198. 198.
    Kabututu Z, Manin M, Pointud JC, et al (2009) Prostaglandin F2alpha synthase activities of aldo-keto reductase 1B1, 1B3 and 1B7. J Biochem 145:161–168PubMedGoogle Scholar

Copyright information

© Springer-Verlag France 2013

Authors and Affiliations

  • N. Boulet
    • 1
  • D. Estève
    • 1
  • A. Bouloumié
    • 1
  • J. Galitzky
    • 1
  1. 1.INSERM/Université Paul Sabatier UMR1048-I2MC, Equipe 1CHU RangueilToulouse cedex 4France

Personalised recommendations