Advertisement

Obésité

, Volume 3, Issue 3, pp 141–145 | Cite as

Les 10es Entretiens de nutrition, institut Pasteur de Lille L’obésité, une maladie nutritionnelle ?

La flore intestinale: un outsider imprévu
  • N. -M. DelzenneEmail author
  • P. -D. Cani
Dossier Thématique / Thematic File
  • 54 Downloads

Résumé

La récente mise en évidence d’une différence probante entre la composition de la flore intestinale d’individus obèses et celle des individus minces a généré le concept d’une implication des bactéries de la flore commensale dans la gestion du métabolisme énergétique. Quel dialogue métabolique s’établit entre les bactéries intestinales et l’organisme hôte ? Peut-on attribuer un rôle « néfaste » à certaines bactéries et « bénéfique » à d’autres bactéries ? Comment l’alimentation et le comportement sont-ils capables d’influencer la composition et l’activité de la flore bactérienne ? Avec quelles conséquences sur le décours de l’obésité et du syndrome métabolique ? Ces questions sont abordées, sous un angle mécanistique basé sur des données expérimentales obtenues chez l’animal, mais sont également étayées d’études observationnelles ou d’intervention menées chez des individus obèses et/ou atteints d’un syndrome métabolique.

Mots clés

Flore intestinale Obésité Syndrome métabolique 

Gut microflora: an unexpected outsider

Abstract

The recent discovery of a significant difference between the composition of the gut microflora present in the obese individual and that present in slimmer individuals, has led to the idea that bacteria in commensal flora may be involved in energy metabolism management. What is the metabolic dialogue between intestinal bacteria and the host organism? Are some bacteria “harmful” whilst others are “beneficial”? How can diet and behaviour affect the composition and activity of bacteriological flora? What effect might this have on the development of obesity and metabolic syndrome? These questions are considered from a mechanistic point of view as well as being backed up by observational and therapeutic studies carried out on subjects presenting obesity and/or metabolic syndrome.

Keywords

Gut microflora Obesity Metabolic syndrome 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31: 107–133PubMedCrossRefGoogle Scholar
  2. 2.
    Xu J, Mahowald MA, Ley RE, Lozupone CA, et al. (2007) Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol 5: e156PubMedCrossRefGoogle Scholar
  3. 3.
    Nicholson JK, Holmes E, Wilson ID (2005) Gut micro-organisms, mammalian metabolism and personalized health care. Nat Rev Microbiol 3: 431–438PubMedCrossRefGoogle Scholar
  4. 4.
    Marteau P, Pochart P, Dore J, et al. (2001) Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol 67: 4939–4942PubMedCrossRefGoogle Scholar
  5. 5.
    Wong JM, de Souza R, Kendall CW, et al. (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40: 235–243PubMedCrossRefGoogle Scholar
  6. 6.
    Delzenne NM, Cani PD (2008) Gut microflora is a key player in host energy homeostasis. Med Sci (Paris) 24: 505–510Google Scholar
  7. 7.
    Backhed F, Ding H, Wang T, et al. (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101: 15718–15723PubMedCrossRefGoogle Scholar
  8. 8.
    Backhed F, Manchester JK, Semenkovich CF, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 104: 979–984PubMedCrossRefGoogle Scholar
  9. 9.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444: 1022–1023PubMedCrossRefGoogle Scholar
  10. 10.
    Kalliomaki M, Collado MC, Salminen S, Isolauri E (2008) Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 87: 534–538PubMedGoogle Scholar
  11. 11.
    Turnbaugh PJ, Ley RE, Mahowald MA (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444: 1027–1031PubMedCrossRefGoogle Scholar
  12. 12.
    Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444: 860–867PubMedCrossRefGoogle Scholar
  13. 13.
    Neal MD, Leaphart C, Levy R, et al. (2006) Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J Immunol 176: 3070–3079PubMedGoogle Scholar
  14. 14.
    Vreugdenhil AC, Rousseau CH, Hartung T (2003) Lipopolysaccharide (LPS)-binding protein mediates LPS detoxification by chylomicrons. J Immunol 170: 1399–1405PubMedGoogle Scholar
  15. 15.
    Wright SD, Ramos RA, Tobias PS (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249: 1431–1433PubMedCrossRefGoogle Scholar
  16. 16.
    Wolowczuk I, Verwaerde C, Viltart O, et al. (2008) Feeding our immune system: impact on metabolism. Clin Dev Immunol 2008: 639803Google Scholar
  17. 17.
    Brun P, Castagliuolo I, Leo VD, et al. (2007) Increased intestinal permeability in obese mice: new evidence in the pathogenesis of non-alcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 292: G518–G525PubMedCrossRefGoogle Scholar
  18. 18.
    Cani PD, Amar J, Iglesias MA, et al. (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56: 1761–1772PubMedCrossRefGoogle Scholar
  19. 19.
    Amar J, Burcelin R, Ruidavets JB, et al. (2008) Energy intake is associated with endotoxemia in apparently healthy men. Am J Clin Nutr 87: 1219–1223PubMedGoogle Scholar
  20. 20.
    Creely SJ, McTernan PG, Kusminski CM, et al. (2007) Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab 292: E740–E747PubMedCrossRefGoogle Scholar
  21. 21.
    Cani PD, Bibiloni R, Knauf C, et al. (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57(6): 1470–1481 (Epub 2008 Feb 27)PubMedCrossRefGoogle Scholar
  22. 22.
    Membrez M, Blancher F, Jaquet M, et al. (2008) Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J 22(7): 2416–2426 (Epub 2008 Mar 7)PubMedCrossRefGoogle Scholar
  23. 23.
    Cani PD, Neyrinck AM, Fava F, et al. (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50: 2374–2383PubMedCrossRefGoogle Scholar
  24. 24.
    Cani PD, Daubioul CA, Reusens B, et al. (2005) Involvement of endogenous glucagon-like peptide-1(7–36) amide on glycaemia-lowering effect of oligofructose in streptozotocin-treated rats. J Endocrinol 185: 457–465PubMedCrossRefGoogle Scholar
  25. 25.
    Cani PD, Neyrinck AM, Maton N, Delzenne NM (2005) Oligofructose promotes satiety in rats fed a high-fat diet: involvement of glucagon-like peptide-1. Obes Res 13: 1000–1007PubMedCrossRefGoogle Scholar
  26. 26.
    Cani PD, Joly E, Horsmans Y, Delzenne NM (2006) Oligofructose promotes satiety in healthy human: a pilot study. Eur J Clin Nutr 60: 567–572PubMedCrossRefGoogle Scholar
  27. 27.
    Cani PD, Knauf C, Iglesias MA, et al. (2006) Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide-1 receptor. Diabetes 55: 1484–1490PubMedCrossRefGoogle Scholar
  28. 28.
    Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125: 1401–1412PubMedGoogle Scholar
  29. 29.
    Cani PD, Dewever C, Delzenne NM (2004) Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br J Nutr 92: 521–526PubMedCrossRefGoogle Scholar
  30. 30.
    Cani PD, Hoste S, Guiot Y, Delzenne NM (2007) Dietary non-digestible carbohydrates promote L-cell differentiation in the proximal colon of rats. Br J Nutr 98: 32–37PubMedCrossRefGoogle Scholar
  31. 31.
    Delzenne NM, Cani PD, Daubioul C, Neyrinck AM (2005) Impact of inulin and oligofructose on gastrointestinal peptides. Br J Nutr 93(Suppl 1): S157–S161PubMedCrossRefGoogle Scholar
  32. 32.
    Delzenne NM, Cani PD, Neyrinck AM (2007) Modulation of glucagon-like peptide-1 and energy metabolism by inulin and oligofructose: experimental data. J Nutr 137: 2547S–2551SPubMedGoogle Scholar

Copyright information

© Springer Paris 2008

Authors and Affiliations

  1. 1.Unité de pharmacocinétique, métabolisme, nutrition et toxicologie (PMNT-7369)université catholique de LouvainBruxellesBelgique

Personalised recommendations