Obésité

, Volume 3, Issue 1, pp 33–41

Adipokines: quelles nouvelles ?

Article Original/Original Article
  • 193 Downloads

Résumé

Le tissu adipeux (TA) est maintenant reconnu comme un organe produisant et sécrétant de très nombreux facteurs appelés adipokines. Au cours de l’obésité, l’augmentation de la masse adipeuse modifie la production de la plupart des adipokines. Par ces sécrétions bio-actives, le TA blanc participe ainsi aux altérations métaboliques et aux pathologies associées à l’obésité comme le diabète de type 2. Cette revue décrit les adipokines récemment identifiées, qui jouent un rôle dans le développement du TA et le métabolisme énergétique. Ainsi, l’étude des propriétés de ces adipokines devrait permettre d’envisager de nouvelles cibles pharmacologiques et de proposer des stratégies thérapeutiques innovantes.

Mots clés

Adipokines Tadipocytes Fraction stromavasculaire Obésité Résistance à l’insuline 

The latest on adipokines

Abstract

Adipose tissue is now recognized as an organ synthesizing and secreting numerous factors called adipokines. Increases in adipose tissue mass during obesity largely modify adipokine production. Several adipokines have been shown to link obesity with insulin resistance or type 2 diabetes. This review addresses the role of “new” adipokines in adipose tissue growth and energy metabolism. Thus, the study of adipokine characteristics and functions will enable the development of new pharmacological targets and therapeutic strategies.

Keywords

Adipokines Adipocytes Stromal vascular fraction Obesity Insulin resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Zhang Y, Proenca R, Maffei M, et al. (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425–432PubMedCrossRefGoogle Scholar
  2. 2.
    Trayhurn P, Bing C, Wood IS (2006) Adipose tissue and adipokines-energy regulation from the human perspective. J Nutr 136: 1935S–1939SPubMedGoogle Scholar
  3. 3.
    Dyck DJ, Heigenhauser GJ, Bruce CR (2006) The role of adipokines as regulators of skeletal muscle fatty acid metabolism and insulin sensitivity. Acta Physiol (Oxf) 186: 5–16Google Scholar
  4. 4.
    Lafontan M, Viguerie N (2006) Role of adipokines in the control of energy metabolism: focus on adiponectin. Curr Opin Pharmacol 6: 580–585PubMedCrossRefGoogle Scholar
  5. 5.
    Maffei M, Halaas J, Ravussin E, et al. (1995) Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1: 1155–1161PubMedCrossRefGoogle Scholar
  6. 6.
    Yaspelkis BB 3rd, Davis JR, Saberi M, et al. (2001) Leptin administration improves skeletal muscle insulin responsiveness in diet-induced insulin-resistant rats. Am J Physiol Endocrinol Metab 280: E130–E142PubMedGoogle Scholar
  7. 7.
    Liu LS, Spelleken M, Rohrig K, et al. (1998) Tumor necrosis factor-alpha acutely inhibits insulin signaling in human adipocytes: implication of the p80 tumor necrosis factor receptor. Diabetes 47: 515–522PubMedCrossRefGoogle Scholar
  8. 8.
    McTernan PG, Fisher FM, Valsamakis G, et al. (2003) Resistin and type 2 diabetes: regulation of resistin expression by insulin and rosiglitazone and the effects of recombinant resistin on lipid and glucose metabolism in human differentiated adipocytes. J Clin Endocrinol Metab 88: 6098–6106PubMedCrossRefGoogle Scholar
  9. 9.
    Fukuhara A, Matsuda M, Nishizawa M, et al. (2005) Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 307: 426–430PubMedCrossRefGoogle Scholar
  10. 10.
    Fukuhara A, Matsuda M, Nishizawa M, et al. (2007) Retraction. Science 318: 565PubMedCrossRefGoogle Scholar
  11. 11.
    Li L, Yang G, Li Q, et al. (2006) Changes and relations of circulating visfatin, apelin, and resistin levels in normal, impaired glucose tolerance, and type 2 diabetic subjects. Exp Clin Endocrinol Diabetes 114: 544–548PubMedCrossRefGoogle Scholar
  12. 12.
    Chen MP, Chung FM, Chang DM, et al. (2006) Elevated plasma level of visfatin/pre-B cell colony-enhancing factor in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 91: 295–299PubMedCrossRefGoogle Scholar
  13. 13.
    Berndt J, Klöting N, Kralisch S, et al. (2005) Plasma visfatin concentrations and fat depot-specific mRNA expression in humans. Diabetes 54: 2911–2916PubMedCrossRefGoogle Scholar
  14. 14.
    Arner P (2006) Visfatin: a true or false trail to type 2 diabetes mellitus. J Clin Endocrinol Metab 91: 28–30PubMedCrossRefGoogle Scholar
  15. 15.
    Wittamer V, Gregoire F, Robberecht P, et al. (2004) The C-terminal nonapeptide of mature chemerin activates the chemerin receptor with low nanomolar potency. J Biol Chem 279: 9956–9962PubMedCrossRefGoogle Scholar
  16. 16.
    Roh SG, Song SH, Choi KC, et al. (2007) Chemerin: a new adipokine that modulates adipogenesis via its own receptor. Biochem Biophys Res Commun 362: 1013–1018PubMedCrossRefGoogle Scholar
  17. 17.
    Bozaoglu K, Bolton K, McMillan J, et al. (2007) Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 148: 4687–4694PubMedCrossRefGoogle Scholar
  18. 18.
    Goralski KB, McCarthy TC, Hanniman EA, et al. (2007) Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J Biol Chem 282: 28175–28188PubMedCrossRefGoogle Scholar
  19. 19.
    Yang RZ, Lee MJ, Hu H, et al. (2006) Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am J Physiol Endocrinol Metab 290: E1253–E1261PubMedCrossRefGoogle Scholar
  20. 20.
    de Souza Batista CM, Yang RZ, Lee MJ, et al. (2007) Omentin plasma levels and gene expression are decreased in obesity. Diabetes 56: 1655–1661PubMedCrossRefGoogle Scholar
  21. 21.
    Abel ED, Peroni OD, Kim JK, et al. (2001) Adipose-selective targeting of the Glut4 gene impairs insulin action in muscle and liver. Nature 409: 729–733PubMedCrossRefGoogle Scholar
  22. 22.
    Yang Q, Graham TE, Mody N, et al. (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436: 356–362PubMedCrossRefGoogle Scholar
  23. 23.
    Ost A, Danielsson A, Liden M, et al. (2007) Retinol-binding protein-4 attenuates insulin-induced phosphorylation of IRS1 and ERK1/2 in primary human adipocytes. Faseb J 21: 3696–3704PubMedCrossRefGoogle Scholar
  24. 24.
    Gavi S, Stuart LM, Kelly P, et al. (2007) Retinol-binding protein 4 is associated with insulin resistance and body fat distribution in nonobese subjects without type 2 diabetes. J Clin Endocrinol Metab 92: 1886–1890PubMedCrossRefGoogle Scholar
  25. 25.
    Graham TE, Yang Q, Bluher M, et al. (2006) Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med 354: 2552–2563PubMedCrossRefGoogle Scholar
  26. 26.
    Janke J, Engeli S, Boschmann M, et al. (2006) Retinol-binding protein 4 in human obesity. Diabetes 55: 2805–2810PubMedCrossRefGoogle Scholar
  27. 27.
    Vitkova M, Klimcakova E, Kovacikova M, et al. (2007) Plasma levels and adipose tissue messenger ribonucleic acid expression of retinol-binding protein 4 are reduced during calorie restriction in obese subjects but are not related to diet-induced changes in insulin sensitivity. J Clin Endocrinol Metab 92: 2330–2335PubMedCrossRefGoogle Scholar
  28. 28.
    Hida K, Wada J, Eguchi J, et al. (2005) Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity. Proc Natl Acad Sci USA 102: 10610–10615PubMedCrossRefGoogle Scholar
  29. 29.
    Klöting N, Berndt J, Kralisch S, et al. (2006) Vaspin gene expression in human adipose tissue: association with obesity and type 2 diabetes. Biochem Biophys Res Commun 339: 430–436PubMedCrossRefGoogle Scholar
  30. 30.
    Youn BS, Klöting N, Kratzsch J, et al. (2008) Serum vaspin concentrations in human obesity and type 2 diabetes. Diabetes 57(2): 372–377PubMedCrossRefGoogle Scholar
  31. 31.
    Seeger J, Ziegelmeier M, Bachmann A, et al. (2008) Serum levels of the adipokine vaspin in relation to metabolic and renal parameters. J Clin Endocrinol Metab 93(1): 247–251PubMedCrossRefGoogle Scholar
  32. 32.
    Yoon JC, Chickering TW, Rosen ED, et al. (2000) Peroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol Cell Biol 20: 5343–5349PubMedCrossRefGoogle Scholar
  33. 33.
    Kersten S, Mandard S, Tan NS, et al. (2000) Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. J Biol Chem 275: 28488–28493PubMedCrossRefGoogle Scholar
  34. 34.
    Wiesner G, Morash BA, Ur E, Wilkinson M (2004) Food restriction regulates adipose-specific cytokines in pituitary gland but not in hypothalamus. J Endocrinol 180: R1–R6PubMedCrossRefGoogle Scholar
  35. 35.
    Mandard S, Zandbergen F, Tan NS, et al. (2004) The direct peroxisome proliferator-activated receptor target fasting-induced adipose factor (FIAF/PGAR/ANGPTL4) is present in blood plasma as a truncated protein that is increased by fenofibrate treatment. J Biol Chem 279: 34411–34420PubMedCrossRefGoogle Scholar
  36. 36.
    Yoshida K, Shimizugawa T, Ono M, Furukawa H (2002) Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein lipase. J Lipid Res 43: 1770–1772PubMedCrossRefGoogle Scholar
  37. 37.
    Xu A, Lam MC, Chan KW, et al. (2005) Angiopoietin-like protein 4 decreases blood glucose and improves glucose tolerance but induces hyperlipidemia and hepatic steatosis in mice. Proc Natl Acad Sci USA 102: 6086–6091PubMedCrossRefGoogle Scholar
  38. 38.
    Ono H, Shimano H, Katagiri H, et al. (2003) Hepatic Akt activation induces marked hypoglycemia, hepatomegaly, and hypertriglyceridemia with sterol regulatory element binding protein involvement. Diabetes 52: 2905–2913PubMedCrossRefGoogle Scholar
  39. 39.
    Chapman HA, Riese RJ, Shi GP (1997) Emerging roles for cysteine proteases in human biology. Annu Rev Physiol 59: 63–88PubMedCrossRefGoogle Scholar
  40. 40.
    Turk V, Turk B, Turk D (2001) Lysosomal cysteine proteases: facts and opportunities. Embo J 20: 4629–4633PubMedCrossRefGoogle Scholar
  41. 41.
    Taleb S, Lacasa D, Bastard JP, et al. (2005) Cathepsin S, a novel biomarker of adiposity: relevance to atherogenesis. Faseb J 19: 1540–1542PubMedGoogle Scholar
  42. 42.
    Fain JN, Tichansky DS, Madan AK (2006) Most of the interleukin 1 receptor antagonist, cathepsin S, macrophage migration inhibitory factor, nerve growth factor, and interleukin 18 release by explants of human adipose tissue is by the non-fat cells, not by the adipocytes. Metabolism 55: 1113–1121PubMedCrossRefGoogle Scholar
  43. 43.
    Taleb S, Cancello R, Poitou C, et al. (2006) Weight loss reduces adipose tissue cathepsin S and its circulating levels in morbidly obese women. J Clin Endocrinol Metab 91: 1042–1047PubMedCrossRefGoogle Scholar
  44. 44.
    Taleb S, Cancello R, Clément K, Lacasa D (2006) Cathepsin S promotes human preadipocyte differentiation: possible involvement of fibronectin degradation. Endocrinology 147: 4950–4959PubMedCrossRefGoogle Scholar
  45. 45.
    Taleb S, Clément K (2007) Emerging role of cathepsin S in obesity and its associated diseases. Clin Chem Lab Med. 45: 328–332PubMedCrossRefGoogle Scholar
  46. 46.
    Soukas A, Cohen P, Socci ND, Friedman JM (2000) Leptin-specific patterns of gene expression in white adipose tissue. Genes Dev 14: 963–980PubMedGoogle Scholar
  47. 47.
    Xiao Y, Junfeng H, Tianhong L, et al. (2006) Cathepsin K in adipocyte differentiation and its potential role in the pathogenesis of obesity. J Clin Endocrinol Metab 91: 4520–4527PubMedCrossRefGoogle Scholar
  48. 48.
    Funicello M, Novelli M, Ragni M, et al. (2007) Cathepsin K null mice show reduced adiposity during the rapid accumulation of fat stores. PLoS ONE 2: e683PubMedCrossRefGoogle Scholar
  49. 49.
    Chiellini C, Costa M, Novelli SE, et al. (2003) Identification of cathepsin K as a novel marker of adiposity in white adipose tissue. J Cell Physiol 195: 309–321PubMedCrossRefGoogle Scholar
  50. 50.
    Yang M, Zhang Y, Pan J, et al. (2007) Cathepsin L activity controls adipogenesis and glucose tolerance. Nat Cell Biol 9: 970–977PubMedGoogle Scholar
  51. 51.
    Huang X, Vaag A, Carlsson E, et al. (2003) Impaired cathepsin L gene expression in skeletal muscle is associated with type 2 diabetes. Diabetes 52: 2411–2418PubMedCrossRefGoogle Scholar
  52. 52.
    Tatemoto K, Hosoya M, Habata Y, et al. (1998) Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun 251: 471–476PubMedCrossRefGoogle Scholar
  53. 53.
    Lee DK, Cheng R, Nguyen T, et al. (2000) Characterization of apelin, the ligand for the APJ receptor. J Neurochem 74: 34–41PubMedCrossRefGoogle Scholar
  54. 54.
    Lee DK, Saldivia VR, Nguyen T, et al. (2005) Modification of the terminal residue of apelin-13 antagonizes its hypotensive action. Endocrinology 146: 231–236PubMedCrossRefGoogle Scholar
  55. 55.
    O’Carroll AM, Selby TL, Palkovits M, Lolait SJ (2000) Distribution of mRNA encoding B78/apj, the rat homologue of the human APJ receptor, and its endogenous ligand apelin in brain and peripheral tissues. Biochim Biophys Acta 1492: 72–80PubMedGoogle Scholar
  56. 56.
    De Mota N, Reaux A, Messari SE, et al. (2004) Apelin, a potent diuretic neuropeptide counteracting vasopressin actions through inhibition of vasopressin neuron activity and vasopressin. Proc Natl Acad Sci USA 101: 10464–10469PubMedCrossRefGoogle Scholar
  57. 57.
    O’shea M, Hansen MJ, Tatemoto K, Morris MJ (2003) Inhibitory effect of apelin-12 on nocturnal food intake in the rat. Nutr Neurosci 6: 163–167PubMedCrossRefGoogle Scholar
  58. 58.
    Reaux A, De Mota N, Skultetyova I, et al. (2001) Physiological role of a novel neuropeptide, apelin, and its receptor in the rat brain. J Neurochem 77: 1085–1096PubMedCrossRefGoogle Scholar
  59. 59.
    Taheri S, Murphy K, Cohen M, et al. (2002) The effects of centrally administered apelin-13 on food intake, water intake and pituitary hormone release in rats. Biochem Biophys Res Commun 291: 1208–1212PubMedCrossRefGoogle Scholar
  60. 60.
    Reaux A, Gallatz K, Palkovits M, Llorens-Cortes C (2002) Distribution of apelin-synthesizing neurons in the adult rat brain. Neuroscience 113: 653–662PubMedCrossRefGoogle Scholar
  61. 61.
    Reaux-Le Goazigo A, Alvear-Perez R, Zizzari P, et al. (2007) Cellular localization of apelin and its receptor in the anterior pituitary: evidence for a direct stimulatory action of apelin on ACTH release. Am J Physiol Endocrinol Metab 292: E7–E15PubMedCrossRefGoogle Scholar
  62. 62.
    Sunter D, Hewson AK, Dickson SL (2003) Intracerebroventricular injection of apelin-13 reduces food intake in the rat. Neurosci Lett 353: 1–4PubMedCrossRefGoogle Scholar
  63. 63.
    Ashley EA, Powers J, Chen M, et al. (2005) The endogenous peptide apelin potently improves cardiac contractility and reduces cardiac loading in vivo. Cardiovascular Res 65: 73–82CrossRefGoogle Scholar
  64. 64.
    Berry MF, Pirolli TJ, Jayasankar V, et al. (2004) Apelin has in vivo inotropic effects on normal and failing heart. Circulation 110: 187–193CrossRefGoogle Scholar
  65. 65.
    Cheng X, Cheng XS, Pang CC (2003) Venous dilator effect of apelin, an endogenous peptide ligand for the orphan APJ receptor, in conscious rats. Eur J Pharmacol 470: 171–175PubMedCrossRefGoogle Scholar
  66. 66.
    Ishida J, Hashimoto T, Hashimoto Y, et al. (2004) Regulatory roles for APJ, a seven-transmembrane receptor related to AT1, in blood pressure in vivo. J Biol Chem 279: 26274–26279PubMedCrossRefGoogle Scholar
  67. 67.
    Zhong JC, Yu XY, Huang Y, et al. (2007) Apelin modulates aortic vascular tone via endothelial nitric oxide synthase phosphorylation pathway in diabetic mice. Cardiovasc Res 74: 388–395PubMedCrossRefGoogle Scholar
  68. 68.
    Boucher J, Masri B, Daviaud D, et al. (2005) Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology 146: 1764–1771PubMedCrossRefGoogle Scholar
  69. 69.
    Daviaud D, Boucher J, Gesta S, et al. (2006) TNFa up-regulates apelin expression in human and mouse adipose tissue. Faseb J 20: 1528–1530PubMedCrossRefGoogle Scholar
  70. 70.
    Dray C, Masseboeuf M, Daviaud D, et al. (2006) Metabolic effects of apelin in human and mouse adipocyte via APJ receptor activation. Obesity review 7: 130Google Scholar
  71. 71.
    Sorhede Winzell M, Magnusson C, Ahren B (2005) The apj receptor is expressed in pancreatic islets and its ligand, apelin, inhibits insulin secretion in mice. Regul Pept 131: 12–17PubMedCrossRefGoogle Scholar
  72. 72.
    Higuchi K, Masaki T, Gotoh K, et al. (2007) Apelin, an APJ receptor ligand, regulates body adiposity and favors the messenger ribonucleic acid expression of uncoupling proteins in mice. Endocrinology 148: 2690–2697PubMedCrossRefGoogle Scholar

Copyright information

© Springer Paris 2008

Authors and Affiliations

  1. 1.Équipe sécrétions adipocytaires, obésités et pathologies associées, institut de médecine moléculaire de Rangueiluniversité Paul-Sabatier, IFR31Toulouse cedex 04France

Personalised recommendations