Advertisement

Frontiers of Medicine

, Volume 13, Issue 4, pp 471–481 | Cite as

Antibiotics-mediated intestinal microbiome perturbation aggravates tacrolimus-induced glucose disorders in mice

  • Yuqiu Han
  • Xiangyang Jiang
  • Qi Ling
  • Li Wu
  • Pin Wu
  • Ruiqi Tang
  • Xiaowei Xu
  • Meifang Yang
  • Lijiang Zhang
  • Weiwei Zhu
  • Baohong WangEmail author
  • Lanjuan Li
Research Article

Abstract

Both immunosuppressants and antibiotics (ABX) are indispensable for transplant patients. However, the former increases the risk of new-onset diabetes, whereas the latter impacts intestinal microbiota (IM). It is still unclear whether and how the interaction between immunosuppressants and ABX alters the IM and thus leads to glucose metabolism disorders. This study examined the alterations of glucose and lipid metabolism and IM in mice exposed to tacrolimus (TAC) with or without ABX. We found that ABX further aggravated TAC-induced glucose tolerance and increased insulin secretion. Combined treatment resulted in exacerbated lipid accumulation in the liver. TAC-altered microbial community was further amplified by ABX administration, as characterized by reductions in phylum Firmicutes, family Lachnospiraceae, and genus Coprococcus. Analyses based on the metagenomic profiles revealed that ABX augmented the effect of TAC on microbial metabolic function mostly related to lipid metabolism. The altered components of gut microbiome and predicted microbial functional profiles showed significant correlation with hepatic lipid accumulation and glucose disorders. In conclusion, ABX aggravated the effect of TAC on the microbiome and its metabolic capacities, which might contribute to hepatic lipid accumulation and glucose disorders. These findings suggest that the ABX-altered microbiome can amplify the diabetogenic effect of TAC and could be a novel therapeutic target for patients.

Keywords

antibiotics tacrolimus glucose disorders microbiome 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This study was supported by the Science Fund for Distinguished Young Scholars of Zhejiang Provincial Natural Science Foundation of China (No. R16H260001) and Major Program of National Natural Science Foundation of China (Nos. 81790633 and 81790630). It also was supported by the Fundamental Research Funds for the Central Universities (No. 2018FZA7001). Lijiang Zhang received grants from the Science Technology Department of Zhejiang Province (No. 2014F30018). We thank Prof. Minli Chen and Mr. Lizong Zhang of Zhejiang Chinese Medical University for their help in the animal experiment and Dr. Honglei Weng of Heidelberg University for language improvement.

Supplementary material

11684_2019_686_MOESM1_ESM.pdf (154 kb)
Supplementary material, approximately 153 KB.

References

  1. 1.
    Valderhaug TG, Hjelmesaeth J, Jenssen T, Roislien J, Leivestad T, Hartmann A. Early posttransplantation hyperglycemia in kidney transplant recipients is associated with overall long-term graft losses. Transplantation 2012; 94(7): 714–720CrossRefGoogle Scholar
  2. 2.
    Valderhaug TG, Hjelmesaeth J, Hartmann A, Roislien J, Bergrem HA, Leivestad T, Line PD, Jenssen T. The association of early post-transplant glucose levels with long-term mortality. Diabetologia 2011; 54(6): 1341–1349CrossRefGoogle Scholar
  3. 3.
    Zaza G, Dalla Gassa A, Felis G, Granata S, Torriani S, Lupo A. Impact of maintenance immunosuppressive therapy on the fecal microbiome of renal transplant recipients: comparison between an everolimus- and a standard tacrolimus-based regimen. PLoS One 2017; 12(5): e0178228CrossRefGoogle Scholar
  4. 4.
    Lankarani KB, Eshraghian A, Nikeghbalian S, Janghorban P, Malek-Hosseini SA. New onset diabetes and impaired fasting glucose after liver transplant: risk analysis and the impact of tacrolimus dose. Exp Clin Transplant 2014; 12(1): 46–51CrossRefGoogle Scholar
  5. 5.
    Ling Q, Xu X, Wang B, Li L, Zheng S. The origin of new-onset diabetes after liver transplantation: liver, islets, or gut? Transplantation 2016; 100(4): 808–813CrossRefGoogle Scholar
  6. 6.
    Bhat M, Pasini E, Copeland J, Angeli M, Husain S, Kumar D, Renner E, Teterina A, Allard J, Guttman DS, Humar A. Impact of immunosuppression on the metagenomic composition of the intestinal microbiome: a systems biology approach to post-transplant diabetes. Sci Rep 2017; 7(1): 10277CrossRefGoogle Scholar
  7. 7.
    Candon S, Perez-Arroyo A, Marquet C, Valette F, Foray AP, Pelletier B, Milani C, Ventura M, Bach JF, Chatenoud L. Antibiotics in early life alter the gut microbiome and increase disease incidence in a spontaneous mouse model of autoimmune insulin-dependent diabetes. PLoS One 2015; 10(5): e0125448CrossRefGoogle Scholar
  8. 8.
    Kawecki D, Pacholczyk M, Lagiewska B, Sawicka-Grzelak A, Durlik M, Mlynarczyk G, Chmura A. Bacterial and fungal infections in the early post-transplantation period after liver transplantation: etiologic agents and their susceptibility. Transplant Proc 2014; 46 (8): 2777–2781CrossRefGoogle Scholar
  9. 9.
    Yousuf T, Kramer J, Kopiec A, Jones B, Iskandar J, Ahmad K, Keshmiri H, Dia M. In search for equilibrium: immunosuppression versus opportunistic infection. J Clin Med Res 2016; 8(2): 175–177CrossRefGoogle Scholar
  10. 10.
    Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G, Quraishi MN, Kinross J, Smidt H, Tuohy KM, Thomas LV, Zoetendal EG, Hart A. The gut microbiota and host health: a new clinical frontier. Gut 2016; 65(2): 330–339CrossRefGoogle Scholar
  11. 11.
    Velagapudi VR, Hezaveh R, Reigstad CS, Gopalacharyulu P, Yetukuri L, Islam S, Felin J, Perkins R, Boren J, Oresic M, Backhed F. The gut microbiota modulates host energy and lipid metabolism in mice. J Lipid Res 2010; 51(5): 1101–1112CrossRefGoogle Scholar
  12. 12.
    Nieuwdorp M, Gilijamse PW, Pai N, Kaplan LM. Role of the microbiome in energy regulation and metabolism. Gastroenterology 2014; 146(6): 1525–1533CrossRefGoogle Scholar
  13. 13.
    Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sorensen SJ, Hansen LH, Jakobsen M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 2010; 5(2): e9085CrossRefGoogle Scholar
  14. 14.
    Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490(7418): 55–60CrossRefGoogle Scholar
  15. 15.
    Tilg H, Moschen AR. Microbiota and diabetes: an evolving relationship. Gut 2014; 63(9): 1513–1521CrossRefGoogle Scholar
  16. 16.
    Wu ZW, Ling ZX, Lu HF, Zuo J, Sheng JF, Zheng SS, Li LJ. Changes of gut bacteria and immune parameters in liver transplant recipients. Hepatobiliary Pancreat Dis Int 2012; 11(1): 40–50CrossRefGoogle Scholar
  17. 17.
    Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, Chen Y, Ji L. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One 2013; 8(8): e71108CrossRefGoogle Scholar
  18. 18.
    Jakobsson HE, Rodriguez-Pineiro AM, Schutte A, Ermund A, Boysen P, Bemark M, Sommer F, Backhed F, Hansson GC, Johansson ME. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep 2015; 16(2): 164–177CrossRefGoogle Scholar
  19. 19.
    Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J, Li K, Gao Z, Mahana D, Raju K, Teitler I, Li H, Alekseyenko AV, Blaser MJ. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 2012; 488(7413): 621–626CrossRefGoogle Scholar
  20. 20.
    Boj SF, van Es JH, Huch M, Li VS, Jose A, Hatzis P, Mokry M, Haegebarth A, van den Born M, Chambon P, Voshol P, Dor Y, Cuppen E, Fillat C, Clevers H. Diabetes risk gene and Wnt effector Tcf7l2/TCF4 controls hepatic response to perinatal and adult metabolic demand. Cell 2012; 151(7): 1595–1607CrossRefGoogle Scholar
  21. 21.
    Wang B, Jiang X, Cao M, Ge J, Bao Q, Tang L, Chen Y, Li L. Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease. Sci Rep 2016; 6(1): 32002CrossRefGoogle Scholar
  22. 22.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010; 7(5): 335–336CrossRefGoogle Scholar
  23. 23.
    Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 2013; 31(9): 814–821CrossRefGoogle Scholar
  24. 24.
    Parks DH, Beiko RG. Identifying biologically relevant differences between metagenomic communities. Bioinformatics 2010; 26(6): 715–721CrossRefGoogle Scholar
  25. 25.
    Lozano I, Van der Werf R, Bietiger W, Seyfritz E, Peronet C, Pinget M, Jeandidier N, Maillard E, Marchioni E, Sigrist S, Dal S. High-fructose and high-fat diet-induced disorders in rats: impact on diabetes risk, hepatic and vascular complications. Nutr Metab (Lond) 2016; 13(1): 15CrossRefGoogle Scholar
  26. 26.
    Bamgbola O. Metabolic consequences of modern immunosuppressive agents in solid organ transplantation. Ther Adv Endocrinol Metab 2016; 7(3): 110–127CrossRefGoogle Scholar
  27. 27.
    Ussar S, Griffin NW, Bezy O, Fujisaka S, Vienberg S, Softic S, Deng L, Bry L, Gordon JI, Kahn CR. Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell Metab 2015; 22(3): 516–530CrossRefGoogle Scholar
  28. 28.
    Prokai A, Fekete A, Pasti K, Rusai K, Banki NF, Reusz G, Szabo AJ. The importance of different immunosuppressive regimens in the development of posttransplant diabetes mellitus. Pediatr Diabetes 2012; 13(1): 81–91CrossRefGoogle Scholar
  29. 29.
    Santos L, Rodrigo E, Pinera C, Quintella E, Ruiz JC, Fernandez-Fresnedo G, Palomar R, Gomez-Alamillo C, de Francisco A, Arias M. New-onset diabetes after transplantation: drug-related risk factors. Transplant Proc 2012; 44(9): 2585–2587CrossRefGoogle Scholar
  30. 30.
    Ubeda C, Pamer EG. Antibiotics, microbiota, and immune defense. Trends Immunol 2012; 33(9): 459–466CrossRefGoogle Scholar
  31. 31.
    Million M, Thuny F, Angelakis E, Casalta JP, Giorgi R, Habib G, Raoult D. Lactobacillus reuteri and Escherichia coli in the human gut microbiota may predict weight gain associated with vancomycin treatment. Nutr Diabetes 2013; 3(9): e87CrossRefGoogle Scholar
  32. 32.
    Bailey LC, Forrest CB, Zhang P, Richards TM, Livshits A, DeRusso PA. Association of antibiotics in infancy with early childhood obesity. JAMA Pediatr 2014; 168(11): 1063–1069CrossRefGoogle Scholar
  33. 33.
    Membrez M, Blancher F, Jaquet M, Bibiloni R, Cani PD, Burcelin RG, Corthesy I, Mace K, Chou CJ. Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J 2008; 22(7): 2416–2426CrossRefGoogle Scholar
  34. 34.
    Carvalho BM, Guadagnini D, Tsukumo DM, Schenka AA, Latuf-Filho P, Vassallo J, Dias JC, Kubota LT, Carvalheira JB, Saad MJ. Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia 2012; 55(10): 2823–2834CrossRefGoogle Scholar
  35. 35.
    Brown K, Godovannyi A, Ma C, Zhang Y, Ahmadi-Vand Z, Dai C, Gorzelak MA, Chan Y, Chan JM, Lochner A, Dutz JP, Vallance BA, Gibson DL. Prolonged antibiotic treatment induces a diabetogenic intestinal microbiome that accelerates diabetes in NOD mice. ISME J 2016; 10(2): 321–332CrossRefGoogle Scholar
  36. 36.
    Livanos AE, Greiner TU, Vangay P, Pathmasiri W, Stewart D, McRitchie S, Li H, Chung J, Sohn J, Kim S, Gao Z, Barber C, Kim J, Ng S, Rogers AB, Sumner S, Zhang XS, Cadwell K, Knights D, Alekseyenko A, Backhed F, Blaser MJ. Antibiotic-mediated gut microbiome perturbation accelerates development oftype 1 diabetes in mice. Nat Microbiol 2016; 1(11): 16140CrossRefGoogle Scholar
  37. 37.
    Vrieze A, Out C, Fuentes S, Jonker L, Reuling I, Kootte RS, van Nood E, Holleman F, Knaapen M, Romijn JA, Soeters MR, Blaak EE, Dallinga-Thie GM, Reijnders D, Ackermans MT, Serlie MJ, Knop FK, Holst JJ, van der Ley C, Kema IP, Zoetendal EG, de Vos WM, Hoekstra JB, Stroes ES, Groen AK, Nieuwdorp M. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol 2014; 60(4): 824–831CrossRefGoogle Scholar
  38. 38.
    Romero FA, Razonable RR. Infections in liver transplant recipients. World J Hepatol 2011; 3(4): 83–92CrossRefGoogle Scholar
  39. 39.
    Li M, Wang B, Zhang M, Rantalainen M, Wang S, Zhou H, Zhang Y, Shen J, Pang X, Zhang M, Wei H, Chen Y, Lu H, Zuo J, Su M, Qiu Y, Jia W, Xiao C, Smith LM, Yang S, Holmes E, Tang H, Zhao G, Nicholson JK, Li L, Zhao L. Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA 2008; 105 (6): 2117–2122CrossRefGoogle Scholar
  40. 40.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444 (7122): 1022–1023CrossRefGoogle Scholar
  41. 41.
    Kittelmann S, Seedorf H, Walters WA, Clemente JC, Knight R, Gordon JI, Janssen PH. Simultaneous amplicon sequencing to explore co-occurrence patterns ofbacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS One 2013; 8(2): e47879CrossRefGoogle Scholar
  42. 42.
    Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 1990; 70(2): 567–590CrossRefGoogle Scholar
  43. 43.
    Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 2006; 40(3): 235–243CrossRefGoogle Scholar
  44. 44.
    Bohmig GA, Krieger PM, Saemann MD, Wenhardt C, Pohanka E, Zlabinger GJ. n-butyrate downregulates the stimulatory function of peripheral blood-derived antigen-presenting cells: a potential mechanism for modulating T-cell responses by short-chain fatty acids. Immunology 1997; 92(2): 234–243CrossRefGoogle Scholar
  45. 45.
    Noverr MC, Huffnagle GB. Does the microbiota regulate immune responses outside the gut? Trends Microbiol 2004; 12 (12): 562–568CrossRefGoogle Scholar
  46. 46.
    De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, Backhed F, Mithieux G. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014; 156(1–2): 84–96CrossRefGoogle Scholar
  47. 47.
    Peng L, He Z, Chen W, Holzman IR, Lin J. Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier. Pediatr Res 2007; 61(1): 37–41CrossRefGoogle Scholar
  48. 48.
    Suzuki T, Yoshida S, Hara H. Physiological concentrations of short-chain fatty acids immediately suppress colonic epithelial permeability. Br J Nutr 2008; 100(02): 297–305CrossRefGoogle Scholar
  49. 49.
    Hansen CH, Krych L, Nielsen DS, Vogensen FK, Hansen LH, Sorensen SJ, Buschard K, Hansen AK. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia 2012; 55(8): 2285–2294CrossRefGoogle Scholar
  50. 50.
    Dubourg G, Lagier JC, Armougom F, Robert C, Audoly G, Papazian L, Raoult D. High-level colonisation of the human gut by Verrucomicrobia following broad-spectrum antibiotic treatment. Int J Antimicrob Agents 2013; 41(2): 149–155CrossRefGoogle Scholar
  51. 51.
    Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, Bae JW. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 2014; 63(5): 727–735CrossRefGoogle Scholar
  52. 52.
    Hänninen A, Toivonen R, Poysti S, Belzer C, Plovier H, Ouwerkerk JP, Emani R, Cani PD, De Vos WM. Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice. Gut 2018; 67(8): 1445–1453CrossRefGoogle Scholar
  53. 53.
    Zhang AH, Qiu S, Xu HY, Sun H, Wang XJ. Metabolomics in diabetes. Clin Chim Acta 2014; 429: 106–110CrossRefGoogle Scholar
  54. 54.
    Menni C, Fauman E, Erte I, Perry JR, Kastenmuller G, Shin SY, Petersen AK, Hyde C, Psatha M, Ward KJ, Yuan W, Milburn M, Palmer CN, Frayling TM, Trimmer J, Bell JT, Gieger C, Mohney RP, Brosnan MJ, Suhre K, Soranzo N, Spector TD. Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes 2013; 62(12): 4270–4276CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yuqiu Han
    • 1
  • Xiangyang Jiang
    • 1
  • Qi Ling
    • 1
    • 2
  • Li Wu
    • 1
  • Pin Wu
    • 3
  • Ruiqi Tang
    • 1
  • Xiaowei Xu
    • 1
  • Meifang Yang
    • 1
  • Lijiang Zhang
    • 4
  • Weiwei Zhu
    • 1
  • Baohong Wang
    • 1
    Email author
  • Lanjuan Li
    • 1
  1. 1.National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
  2. 2.Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
  3. 3.Division of Throat Surgery, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
  4. 4.Center of Safety EvaluationZhejiang Academy of Medical SciencesHangzhouChina

Personalised recommendations