Advertisement

Frontiers of Medicine

, Volume 13, Issue 2, pp 189–201 | Cite as

Hybrid polymer biomaterials for bone tissue regeneration

  • Bo Lei
  • Baolin Guo
  • Kunal J. Rambhia
  • Peter X. MaEmail author
Open Access
Review

Abstract

Native tissues possess unparalleled physiochemical and biological functions, which can be attributed to their hybrid polymer composition and intrinsic bioactivity. However, there are also various concerns or limitations over the use of natural materials derived from animals or cadavers, including the potential immunogenicity, pathogen transmission, batch to batch consistence and mismatch in properties for various applications. Therefore, there is an increasing interest in developing degradable hybrid polymer biomaterials with controlled properties for highly efficient biomedical applications. There have been efforts to mimic the extracellular protein structure such as nanofibrous and composite scaffolds, to functionalize scaffold surface for improved cellular interaction, to incorporate controlled biomolecule release capacity to impart biological signaling, and to vary physical properties of scaffolds to regulate cellular behavior. In this review, we highlight the design and synthesis of degradable hybrid polymer biomaterials and focus on recent developments in osteoconductive, elastomeric, photoluminescent and electroactive hybrid polymers. The review further exemplifies their applications for bone tissue regeneration.

Keywords

hybrid polymer bone regeneration tissue engineering biomaterials 

Notes

Acknowledgements

This work was financially supported by US DOD (No. W81XWH-12-2-0008), the National Institutes of Health (Nos. NIDCR DE022327 and T32 HD007505), National Natural Science Foundation of China (Nos. 51502237, 21304073, and 51673155), and Xi’an Jiaotong University.

References

  1. 1.
    Watt FM, Huck WTS. Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol 2013; 14(8): 467–473Google Scholar
  2. 2.
    Erickson IE, Kestle SR, Zellars KH, Farrell MJ, Kim M, Burdick JA, Mauck RL. High mesenchymal stem cell seeding densities in hyaluronic acid hydrogels produce engineered cartilage with native tissue properties. Acta Biomater 2012; 8(8): 3027–3034Google Scholar
  3. 3.
    Lee SS, Huang BJ, Kaltz SR, Sur S, Newcomb CJ, Stock SR, Shah RN, Stupp SI. Bone regeneration with low dose BMP-2 amplified by biomimetic supramolecular nanofibers within collagen scaffolds. Biomaterials 2013; 34(2): 452–459Google Scholar
  4. 4.
    Dorozhkin SV. Calcium orthophosphate-containing biocomposites and hybrid biomaterials for biomedical applications. J Funct Biomater 2015; 6(3): 708–832Google Scholar
  5. 5.
    Wu W, Wang WG, Li JS. Star polymers: advances in biomedical applications. Prog Polym Sci 2015; 46: 55–85Google Scholar
  6. 6.
    Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 2013; 42(3): 1147–1235Google Scholar
  7. 7.
    Tian HY, Tang ZH, Zhuang XL, Chen XS, Jing XB. Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 2012; 37(2): 237–280Google Scholar
  8. 8.
    Pan Z, Ding J. Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine. Interface Focus 2012; 2(3): 366–377Google Scholar
  9. 9.
    Igwe JC, Mikael PE, Nukavarapu SP. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering. J Tissue Eng Regen Med 2014; 8(2): 131–142Google Scholar
  10. 10.
    Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK. Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 2015; 72: 269–281Google Scholar
  11. 11.
    Venkatesan J, Vinodhini PA, Sudha PN, Kim SK. Chitin and chitosan composites for bone tissue regeneration. Adv Food Nutr Res 2014;73: 59–81 PMID: 25300543Google Scholar
  12. 12.
    Yunus Basha R, Sampath Kumar TS, Doble M. Design of biocomposite materials for bone tissue regeneration. Mater Sci Eng C 2015; 57: 452–463Google Scholar
  13. 13.
    Sun F, Zhou H, Lee J. Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater 2011; 7(11): 3813–3828Google Scholar
  14. 14.
    Gkioni K, Leeuwenburgh SCG, Douglas TEL, Mikos AG, Jansen JA. Mineralization of hydrogels for bone regeneration. Tissue Eng Part B Rev 2010; 16(6): 577–585Google Scholar
  15. 15.
    Wei Q, Lu J, Wang Q, Fan H, Zhang X. Novel synthesis strategy for composite hydrogel of collagen/hydroxyapatite-microsphere originating from conversion of CaCO3 templates. Nanotechnology 2015; 26(11): 115605Google Scholar
  16. 16.
    Vo TN, Shah SR, Lu S, Tatara AM, Lee EJ, Roh TT, Tabata Y, Mikos AG. Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering. Biomaterials 2016; 83: 1–11Google Scholar
  17. 17.
    Nejadnik MR, Mikos AG, Jansen JA, Leeuwenburgh SCG. Facilitating the mineralization of oligo(poly(ethylene glycol) fumarate) hydrogel by incorporation of hydroxyapatite nanoparticles. J Biomed Mater Res A 2012; 100(5): 1316–1323Google Scholar
  18. 18.
    Samavedi S, Whittington AR, Goldstein AS. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater 2013; 9(9): 8037–8045Google Scholar
  19. 19.
    Wei G, Jin Q, Giannobile WV, Ma PX. The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres. Biomaterials 2007; 28(12): 2087–2096Google Scholar
  20. 20.
    Zhang R, Ma PX. Poly(α-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res 1999; 44(4): 446–455Google Scholar
  21. 21.
    Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R. Surface modification of inorganic nanoparticles for development of organicinorganic nanocomposites—a review. Prog Polym Sci 2013; 38(8): 1232–1261Google Scholar
  22. 22.
    Pina S, Oliveira JM, Reis RL. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater 2015; 27(7): 1143–1169Google Scholar
  23. 23.
    Sahoo NG, Pan YZ, Li L, He CB. Nanocomposites for bone tissue regeneration. Nanomedicine (Lond) 2013; 8(4): 639–653Google Scholar
  24. 24.
    Ma PX, Zhang R, Xiao G, Franceschi R. Engineering new bone tissue in vitro on highly porous poly(α-hydroxyl acids)/hydroxyapatite composite scaffolds. J Biomed Mater Res 2001; 54(2): 284–293Google Scholar
  25. 25.
    Shinzato S, Nakamura T, Ando K, Kokubo T, Kitamura Y. Mechanical properties and osteoconductivity of new bioactive composites consisting of partially crystallized glass beads and poly (methyl methacrylate). J Biomed Mater Res 2002; 60(4): 556–563Google Scholar
  26. 26.
    Koleganova VA, Bernier SM, Dixon SJ, Rizkalla AS. Bioactive glass/polymer composite materials with mechanical properties matching those of cortical bone. J Biomed Mater Res A 2006; 77(3): 572–579Google Scholar
  27. 27.
    Marcolongo M, Ducheyne P, Garino J, Schepers E. Bioactive glass fiber/polymeric composites bond to bone tissue. J Biomed Mater Res 1998; 39(1): 161–170Google Scholar
  28. 28.
    Kerativitayanan P, Gaharwar AK. Elastomeric and mechanically stiff nanocomposites from poly(glycerol sebacate) and bioactive nanosilicates. Acta Biomater 2015; 26: 34–44Google Scholar
  29. 29.
    Zhao X, Wu Y, Du Y, Chen X, Lei B, Xue Y, Ma PX. A highly bioactive and biodegradable poly(glycerol sebacate)–silica glass hybrid elastomer with tailored mechanical properties for bone tissue regeneration. J Mater Chem B Mater Biol Med 2015; 3(16): 3222–3233Google Scholar
  30. 30.
    Du YZ, Yu M, Ge J, Ma PX, Chen XF, Lei B. Development of a multifunctional platform based on strong, intrinsically photoluminescent and antimicrobial silica-poly(citrates)-based hybrid biodegradable elastomers for bone regeneration. Adv Funct Mater 2015; 25(31): 5016–5029Google Scholar
  31. 31.
    Du YZ, Ge J, Shao YP, Ma PX, Chen XF, Lei B. Development of silica grafted poly(1,8-octanediol-co-citrates) hybrid elastomers with highly tunable mechanical properties and biocompatibility. J Mater Chem B Mater Biol Med 2015; 3(15): 2986–3000Google Scholar
  32. 32.
    Balint R, Cassidy NJ, Cartmell SH. Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 2014; 10(6): 2341–2353Google Scholar
  33. 33.
    Hopley EL, Salmasi S, Kalaskar DM, Seifalian AM. Carbon nanotubes leading the way forward in new generation 3D tissue engineering. Biotechnol Adv 2014; 32(5): 1000–1014Google Scholar
  34. 34.
    Liu X, Holzwarth JM, Ma PX. Functionalized synthetic biodegradable polymer scaffolds for tissue engineering. Macromol Biosci 2012; 12(7): 911–919Google Scholar
  35. 35.
    Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater 2013; 9(1): 4457–4486Google Scholar
  36. 36.
    Lei B, Chen XF, Wang YJ, Zhao N. Synthesis and in vitro bioactivity of novel mesoporous hollow bioactive glass microspheres. Mater Lett 2009; 63(20): 1719–1721Google Scholar
  37. 37.
    Lei B, Chen X, Wang Y, Zhao N, Du C, Fang L. Surface nanoscale patterning of bioactive glass to support cellular growth and differentiation. J Biomed Mater Res A 2010; 94(4): 1091–1099Google Scholar
  38. 38.
    Chen XF, Lei B, Wang YJ, Zhao N. Morphological control and in vitro bioactivity of nanoscale bioactive glasses. J Non-Cryst Solids 2009; 355(13): 791–796Google Scholar
  39. 39.
    Zakaria SM, Sharif Zein SH, Othman MR, Yang F, Jansen JA. Nanophase hydroxyapatite as a biomaterial in advanced hard tissue engineering: a review. Tissue Eng Part B Rev 2013; 19(5): 431–441Google Scholar
  40. 40.
    Boccaccini AR, Erol M, Stark WJ, Mohn D, Hong ZK, Mano JF. Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos Sci Technol 2010; 70(13): 1764–1776Google Scholar
  41. 41.
    Lei B, Shin KH, Noh DY, Koh YH, Choi WY, Kim HE. Bioactive glass microspheres as reinforcement for improving the mechanical properties and biological performance of poly(e-caprolactone) polymer for bone tissue regeneration. J Biomed Mater Res Part B Appl Biomater 2012; 100B (4): 967–975Google Scholar
  42. 42.
    Lei B, Chen XF, Han X, Zhou JA. Versatile fabrication of nanoscale sol-gel bioactive glass particles for efficient bone tissue regeneration. J Mater Chem 2012; 22(33): 16906–16913Google Scholar
  43. 43.
    Lei B, Shin KH, Noh DY, Jo IH, Koh YH, Kim HE, Kim SE. Solgel derived nanoscale bioactive glass (NBG) particles reinforced poly(ε-caprolactone) composites for bone tissue engineering. Mater Sci Eng C 2013; 33(3): 1102–1108Google Scholar
  44. 44.
    Roohani-Esfahani SI, Nouri-Khorasani S, Lu Z, Appleyard R, Zreiqat H. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites. Biomaterials 2010; 31(21): 5498–5509Google Scholar
  45. 45.
    Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP. Bioactive glass in tissue engineering. Acta Biomater 2011; 7(6): 2355–2373Google Scholar
  46. 46.
    Peter M, Binulal NS, Nair SV, Selvamurugan N, Tamura H, Jayakumar R. Novel biodegradable chitosan-gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem Eng J 2010; 158(2): 353–361Google Scholar
  47. 47.
    Mozafari M, Moztarzadeh F, Rabiee M, Azami M, Maleknia S, Tahriri M, Moztarzadeh Z, Nezafati N. Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering. Ceram Int 2010; 36(8): 2431–2439Google Scholar
  48. 48.
    Hong Z, Reis RL, Mano JF. Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles. Acta Biomater 2008; 4(5): 1297–1306Google Scholar
  49. 49.
    Liu X, Smith LA, Hu J, Ma PX. Biomimetic nanofibrous gelatin/ apatite composite scaffolds for bone tissue engineering. Biomaterials 2009; 30(12): 2252–2258Google Scholar
  50. 50.
    He C, Xiao G, Jin X, Sun C, Ma PX. Electrodeposition on nanofibrous polymer scaffolds: rapid mineralization, tunable calcium phosphate composition and topography. Adv Funct Mater 2010; 20(20): 3568–3576Google Scholar
  51. 51.
    Lei B, Wang L, Chen XF, Chae SK. Biomimetic and molecular level-based silicate bioactive glass-gelatin hybrid implants for loading-bearing bone fixation and repair. J Mater Chem B Mater Biol Med 2013; 1(38): 5153–5162Google Scholar
  52. 52.
    Chen J, Que W, Xing Y, Lei B. Molecular level-based bioactive glass-poly (caprolactone) hybrids monoliths with porous structure for bone tissue repair. Ceram Int 2015; 41(2): 3330–3334Google Scholar
  53. 53.
    Xie M, Ge J, Lei B, Zhang Q, Chen X, Ma PX. Star-shaped, biodegradable, and elastomeric PLLA-PEG-POSS hybrid membrane with biomineralization activity for guiding bone tissue regeneration. Macromol Biosci 2015; 15(12): 1656–1662Google Scholar
  54. 54.
    Chen J, Du Y, Que W, Xing Y, Chen X, Lei B. Crack-free polydimethylsiloxane-bioactive glass-poly(ethylene glycol) hybrid monoliths with controlled biomineralization activity and mechanical property for bone tissue regeneration. Colloids Surf B Biointerfaces 2015; 136: 126–133Google Scholar
  55. 55.
    Chen J, Du YZ, Que WX, Xing YL, Lei B. Content-dependent biomineralization activity and mechanical properties based on polydimethylsiloxane-bioactive glass-poly(caprolactone) hybrids monoliths for bone tissue regeneration. Rsc Adv. 2015; 5(75): 61309–61317Google Scholar
  56. 56.
    Lei B, Shin KH, Moon YW, Noh DY, Koh YH, Jin Y, Kim HE. Synthesis and bioactivity of sol-gel derived porous, bioactive glass microspheres using chitosan as novel biomolecular template. J Am Ceram Soc 2012; 95(1): 30–33Google Scholar
  57. 57.
    Mahony O, Tsigkou O, Ionescu C, Minelli C, Ling L, Hanly R, Smith ME, Stevens MM, Jones JR. Silica-gelatin hybrids with tailorable degradation and mechanical properties for tissue regeneration. Adv Funct Mater 2010; 20(22): 3835–3845Google Scholar
  58. 58.
    Lei B, Shin KH, Jo IH, Koh YH, Kim HE. Highly porous gelatinsilica hybrid scaffolds with textured surfaces using new direct foaming/freezing technique. Mater Chem Phys 2014; 145(3): 397–402Google Scholar
  59. 59.
    Lei B, Shin KH, Noh DY, Jo IH, Koh YH, Choi WY, Kim HE. Nanofibrous gelatin-silica hybrid scaffolds mimicking the native extracellular matrix (ECM) using thermally induced phase separation. J Mater Chem 2012; 22(28): 14133–14140Google Scholar
  60. 60.
    Xue YM, Wang L, Shao YP, Yan J, Chen XF, Lei B. Facile and green fabrication of biomimetic gelatin-siloxane hybrid hydrogel with highly elastic properties for biomedical applications. Chem Eng J 2014; 251: 158–164Google Scholar
  61. 61.
    Duan S, Yang X, Mei F, Tang Y, Li X, Shi Y, Mao J, Zhang H, Cai Q. Enhanced osteogenic differentiation of mesenchymal stem cells on poly(L-lactide) nanofibrous scaffolds containing carbon nanomaterials. J Biomed Mater Res A 2015; 103(4): 1424–1435Google Scholar
  62. 62.
    Sitharaman B, Shi X, Walboomers XF, Liao H, Cuijpers V, Wilson LJ, Mikos AG, Jansen JA. In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering. Bone 2008; 43(2): 362–370Google Scholar
  63. 63.
    Park S, Park J, Jo I, Cho SP, Sung D, Ryu S, Park M, Min KA, Kim J, Hong S, Hong BH, Kim BS. In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds. Biomaterials 2015; 58: 93–102Google Scholar
  64. 64.
    Siqueira IAWB, Corat MAF, Cavalcanti B, Ribeiro Neto WA, Martin AA, Bretas RE, Marciano FR, Lobo AO. In vitro and in vivo studies of novel poly(D,L-lactic acid), superhydrophilic carbon nanotubes, and nanohydroxyapatite scaffolds for bone regeneration. ACS Appl Mater Interfaces 2015; 7(18): 9385–9398Google Scholar
  65. 65.
    Mikael PE, Amini AR, Basu J, Josefina Arellano-Jimenez M, Laurencin CT, Sanders MM, Barry Carter C, Nukavarapu SP. Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in vitro and in vivo evaluation. Biomed Mater 2014; 9(3): 035001Google Scholar
  66. 66.
    Hirata E, Ménard-Moyon C, Venturelli E, Takita H, Watari F, Bianco A, Yokoyama A. Carbon nanotubes functionalized with fibroblast growth factor accelerate proliferation of bone marrowderived stromal cells and bone formation. Nanotechnology 2013; 24(43): 435101Google Scholar
  67. 67.
    Das B, Chattopadhyay P, Maji S, Upadhyay A, Das Purkayastha M, Mohanta CL, Maity TK, Karak N. Bio-functionalized MWCNT/ hyperbranched polyurethane bionanocomposite for bone regeneration. Biomed Mater 2015; 10(2): 025011Google Scholar
  68. 68.
    Lei B, Shin KH, Koh YH, Kim HE. Porous gelatin-siloxane hybrid scaffolds with biomimetic structure and properties for bone tissue regeneration. J Biomed Mater Res B Appl Biomater 2014; 102(7): 1528–1536Google Scholar
  69. 69.
    Nettles DL, Chilkoti A, Setton LA. Applications of elastin-like polypeptides in tissue engineering. Adv Drug Deliv Rev 2010; 62(15): 1479–1485Google Scholar
  70. 70.
    Chen QZ, Liang SL, Thouas GA. Elastomeric biomaterials for tissue engineering. Prog Polym Sci 2013; 38(3–4): 584–671Google Scholar
  71. 71.
    Sant S, Hwang CM, Lee SH, Khademhosseini A. Hybrid PGS-PCL microfibrous scaffolds with improved mechanical and biological properties. J Tissue Eng Regen Med 2011; 5(4): 283–291Google Scholar
  72. 72.
    Kharaziha M, Nikkhah M, Shin SR, Annabi N, Masoumi N, Gaharwar AK, Camci-Unal G, Khademhosseini A. PGS:Gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues. Biomaterials 2013; 34(27): 6355–6366Google Scholar
  73. 73.
    Bokobza L. Mechanical, electrical and spectroscopic investigations of carbon nanotube-reinforced elastomers. Vib Spectrosc 2009; 51(1): 52–59Google Scholar
  74. 74.
    Pei AH, Malho JM, Ruokolainen J, Zhou Q, Berglund LA. Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 2011; 44(11): 4422–4427Google Scholar
  75. 75.
    Paul DR, Mark JE. Fillers for polysiloxane (“silicone”) elastomers. Prog Polym Sci 2010; 35(7): 893–901Google Scholar
  76. 76.
    Moradi A, Dalilottojari A, Pingguan-Murphy B, Djordjevic I. Fabrication and characterization of elastomeric scaffolds comprised of a citric acid-based polyester/hydroxyapatite microcomposite. Mater Des 2013; 50: 446–450Google Scholar
  77. 77.
    Liang SL, Cook WD, Thouas GA, Chen QZ. The mechanical characteristics and in vitro biocompatibility of poly(glycerol sebacate)-bioglass elastomeric composites. Biomaterials 2010; 31(33): 8516–8529Google Scholar
  78. 78.
    Du Y, Yu M, Chen X, Ma PX, Lei B. Development of biodegradable poly(citrate)-polyhedral oligomeric silsesquioxanes hybrid elastomers with high mechanical properties and osteogenic differentiation activity. ACS Appl Mater Interfaces 2016; 8(5): 3079–3091Google Scholar
  79. 79.
    Du Y, Xue Y, Ma PX, Chen X, Lei B. Biodegradable, elastomeric, and intrinsically photoluminescent poly(silicon-citrates) with high photostability and biocompatibility for tissue regeneration and bioimaging. Adv Healthc Mater 2016; 5(3): 382–392Google Scholar
  80. 80.
    Guimard NK, Gomez N, Schmidt CE. Conducting polymers in biomedical engineering. Prog Polym Sci 2007; 32(8–9): 876–921Google Scholar
  81. 81.
    Patil AO, Heeger AJ, Wudl F. Optical-properties of conducting polymers. Chem Rev 1988; 88(1): 183–200Google Scholar
  82. 82.
    Guo BL, Glavas L, Albertsson AC. Biodegradable and electrically conducting polymers for biomedical applications. Prog Polym Sci 2013; 38(9): 1263–1286Google Scholar
  83. 83.
    Xie M, Wang L, Ge J, Guo B, Ma PX. Strong electroactive biodegradable shape memory polymer networks based on starshaped polylactide and aniline trimer for bone tissue engineering. ACS Appl Mater Interfaces 2015; 7(12): 6772–6781Google Scholar
  84. 84.
    Xie M, Wang L, Guo B, Wang Z, Chen YE, Ma PX. Ductile electroactive biodegradable hyperbranched polylactide copolymers enhancing myoblast differentiation. Biomaterials 2015; 71: 158–167Google Scholar
  85. 85.
    Hardy JG, Geissler SA, Aguilar D Jr, Villancio-Wolter MK, Mouser DJ, Sukhavasi RC, Cornelison RC, Tien LW, Preda RC, Hayden RS, Chow JK, Nguy L, Kaplan DL, Schmidt CE. Instructive conductive 3D silk foam-based bone tissue scaffolds enable electrical stimulation of stem cells for enhanced osteogenic differentiation. Macromol Biosci 2015; 15(11): 1490–1496Google Scholar
  86. 86.
    Meng S, Zhang Z, Rouabhia M. Accelerated osteoblast mineralization on a conductive substrate by multiple electrical stimulation. J Bone Miner Metab 2011; 29(5): 535–544Google Scholar
  87. 87.
    Meng S, Rouabhia M, Zhang Z. Electrical stimulation modulates osteoblast proliferation and bone protein production through heparin-bioactivated conductive scaffolds. Bioelectromagnetics 2013; 34(3): 189–199Google Scholar
  88. 88.
    Yazdimamaghani M, Razavi M, Mozafari M, Vashaee D, Kotturi H, Tayebi L. Biomineralization and biocompatibility studies of bone conductive scaffolds containing poly(3,4-ethylenedioxythiophene): poly(4-styrene sulfonate) (PEDOT:PSS). J Mater Sci Mater Med 2015; 26(12): 274Google Scholar
  89. 89.
    Pelto J, Björninen M, Pälli A, Talvitie E, Hyttinen J, Mannerström B, Suuronen Seppanen R, Kellomäki M, Miettinen S, Haimi S. Novel polypyrrole-coated polylactide scaffolds enhance adipose stem cell proliferation and early osteogenic differentiation. Tissue Eng Part A 2013; 19(7–8): 882–892Google Scholar
  90. 90.
    Guo B, Lei B, Li P, Ma PX. Functionalized scaffolds to enhance tissue regeneration. Regen Biomater 2015; 2(1): 47–57Google Scholar
  91. 91.
    Jiang T, Carbone EJ, Lo KWH, Laurencin CT. Electrospinning of polymer nanofibers for tissue regeneration. Prog Polym Sci 2015; 46: 1–24Google Scholar
  92. 92.
    Schneider OD, Weber F, Brunner TJ, Loher S, Ehrbar M, Schmidlin PR, Stark WJ. In vivo and in vitro evaluation of flexible, cottonwoollike nanocomposites as bone substitute material for complex defects. Acta Biomater 2009; 5(5): 1775–1784Google Scholar
  93. 93.
    Lee EJ, Shin DS, Kim HE, Kim HW, Koh YH, Jang JH. Membrane of hybrid chitosan-silica xerogel for guided bone regeneration. Biomaterials 2009; 30(5): 743–750Google Scholar
  94. 94.
    Xie M, Ge J, Xue Y, Du Y, Lei B, Ma PX. Photo-crosslinked fabrication of novel biocompatible and elastomeric star-shaped inositol-based polymer with highly tunable mechanical behavior and degradation. J Mech Behav Biomed Mater 2015; 51: 163–168Google Scholar
  95. 95.
    Li LC, Yu M, Ma PX, Guo BL. Electroactive degradable copolymers enhancing osteogenic differentiation from bone marrow derived mesenchymal stem cells. J Mater Chem B Mater Biol Med 2016; 4(3): 471–481Google Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://doi.org/creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the appropriate credit is given to the original author(s) and the source, and a link is provided to the Creative Commons license, which indicates if changes are made.

Authors and Affiliations

  • Bo Lei
    • 1
  • Baolin Guo
    • 1
  • Kunal J. Rambhia
    • 2
  • Peter X. Ma
    • 1
    • 2
    • 3
    • 4
    • 5
    Email author
  1. 1.Frontier Institute of Science and TechnologyXi’an Jiaotong UniversityXi’anChina
  2. 2.Department of Biomedical EngineeringUniversity of MichiganAnn ArborUSA
  3. 3.Department of Biologic and Materials SciencesUniversity of MichiganAnn ArborUSA
  4. 4.Macromolecular Science and Engineering CenterUniversity of MichiganAnn ArborUSA
  5. 5.Department of Material Science and EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations