Frontiers of Medicine

, Volume 12, Issue 5, pp 593–599 | Cite as

Venetoclax and low-dose cytarabine induced complete remission in a patient with high-risk acute myeloid leukemia: a case report

  • Bingshan Liu
  • Roshni Narurkar
  • Madhura Hanmantgad
  • Wahib Zafar
  • Yongping Song
  • Delong LiuEmail author
Case Report


Conventional combination therapies have not resulted in considerable progress in the treatment of acute myeloid leukemia (AML). Elderly patients with AML and poor risk factors have grave prognosis. Midostaurin has been recently approved for the treatment of FLT-3-mutated AML. Venetoclax, a BCL-2 inhibitor, has been approved for the treatment of relapsed and/or refractory chronic lymphoid leukemia. Clinical trials on applying venetoclax in combination with cytarabine and other agents to treat various hematological malignancies are currently underway. Here, we present a case of a male patient with poor performance status and who developed AML following allogeneic hematopoietic stem cell transplant for high-risk myelodysplasia. The patient with high risk AML achieved complete response to the combined treatment regimen of low-dose cytarabine and venetoclax. Furthermore, we reviewed current clinical trials on the use of venetoclax for hematological malignancies.


venetoclax cytarabine AML leukemia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This project was partly supported by the Zhengzhou University Training Grant (BL) and the National Natural Science Foundation of China (No. 81470287, YPS). BL is a recipient of 2017 CAHON Young Investigator Award (


  1. 1.
    Ossenkoppele G, Löwenberg B. How I treat the older patient with acute myeloid leukemia. Blood 2015; 125(5): 767–774Google Scholar
  2. 2.
    Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, Potter NE, Heuser M, Thol F, Bolli N, Gundem G, Van Loo P, Martincorena I, Ganly P, Mudie L, McLaren S, O’Meara S, Raine K, Jones DR, Teague JW, Butler AP, Greaves MF, Ganser A, Döhner K, Schlenk RF, Döhner H, Campbell PJ; Chronic Myeloid Disorders working group of the International Cancer Genome Consortium. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 2016; 374(23): 2209–2221Google Scholar
  3. 3.
    Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, Yoon CJ, Ellis P, Wedge DC, Pellagatti A, Shlien A, Groves MJ, Forbes SA, Raine K, Hinton J, Mudie LJ, McLaren S, Hardy C, Latimer C, Della Porta MG, O’Meara S, Ambaglio I, Galli A, Butler AP, Walldin G, Teague JW, Quek L, Sternberg A, Gambacorti-Passerini C, Cross NC, Green AR, Boultwood J, Vyas P, Hellstrom-Lindberg E, Bowen D, Cazzola M, Stratton MR, Campbell PJ. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 2013; 122(22): 3616–3627Google Scholar
  4. 4.
    Linder K, Iragavarapu C, Liu D. SETBP1 mutations as a biomarker for myelodysplasia /myeloproliferative neoplasm overlap syndrome. Biomark Res 2017; 5(1): 33Google Scholar
  5. 5.
    Taylor J, Xiao W, Abdel-Wahab O. Diagnosis and classification of hematologic malignancies on the basis of genetics. Blood 2017; 130(4): 410–423Google Scholar
  6. 6.
    Shimoni A, Labopin M, Savani B, Volin L, Ehninger G, Kuball J, Bunjes D, Schaap N, Vigouroux S, Bacigalupo A, Veelken H, Sierra J, Eder M, Niederwieser D, Mohty M, Nagler A. Long-term survival and late events after allogeneic stem cell transplantation from HLAmatched siblings for acute myeloid leukemia with myeloablative compared to reduced-intensity conditioning: a report on behalf of the acute leukemia working party of European group for blood and marrow transplantation. J Hematol Oncol 2016; 9(1): 118Google Scholar
  7. 7.
    Saraceni F, Labopin M, Gorin NC, Blaise D, Tabrizi R, Volin L, Cornelissen J, Cahn JY, Chevallier P, Craddock C, Wu D, Huynh A, Arcese W, Mohty M, Nagler A. Matched and mismatched unrelated donor compared to autologous stem cell transplantation for acute myeloid leukemia in first complete remission: a retrospective, propensity score-weighted analysis from the ALWP of the EBMT. J Hematol Oncol 2016; 9(1): 79Google Scholar
  8. 8.
    Ruggeri A, Battipaglia G, Labopin M, Ehninger G, Beelen D, Tischer J, Ganser A, Schwerdtfeger R, Glass B, Finke J, Michallet M, Stelljes M, Jindra P, Arnold R, Kröger N, Mohty M, Nagler A. Unrelated donor versus matched sibling donor in adults with acute myeloid leukemia in first relapse: an ALWP-EBMT study. J Hematol Oncol 2016; 9(1): 89Google Scholar
  9. 9.
    Montalban-Bravo G, Takahashi K, Garcia-Manero G. Decitabine in TP53-mutated AML. N Engl J Med 2017; 376(8): 796–798 (Correspondence)Google Scholar
  10. 10.
    Welch JS, Petti AA, Ley TJ. Decitabine in TP53-mutated AML. N Engl J Med 2017; 376(8): 797–798 (Correspondence)Google Scholar
  11. 11.
    Guerenne L, Beurlet S, Said M, Gorombei P, Le Pogam C, Guidez F, de la Grange P, Omidvar N, Vanneaux V, Mills K, Mufti GJ, Sarda-Mantel L, Noguera ME, Pla M, Fenaux P, Padua RA, Chomienne C, Krief P. GEP analysis validates high risk MDS and acute myeloid leukemia post MDS mice models and highlights novel dysregulated pathways. J Hematol Oncol 2016; 9(1): 5Google Scholar
  12. 12.
    Ivey A, Hills RK, Simpson MA, Jovanovic JV, Gilkes A, Grech A, Patel Y, Bhudia N, Farah H, Mason J, Wall K, Akiki S, Griffiths M, Solomon E, McCaughan F, Linch DC, Gale RE, Vyas P, Freeman SD, Russell N, Burnett AK, Grimwade D. Assessment of minimal residual disease in standard-risk AML. N Engl J Med 2016; 374(5): 422–433Google Scholar
  13. 13.
    Boddu P, Takahashi K, Pemmaraju N, Daver N, Benton CB, Pierce S, Konopleva M, Ravandi F, Cortes J, Kantarjian H, DiNardo CD. Influence of IDH on FLT3ITD status in newly diagnosed AML. Leukemia 2017; 31(11): 2526–2529Google Scholar
  14. 14.
    Kelly AD, Kroeger H, Yamazaki J, Taby R, Neumann F, Yu S, Lee JT, Patel B, Li Y, He R, Liang S, Lu Y, Cesaroni M, Pierce SA, Kornblau SM, Bueso-Ramos CE, Ravandi F, Kantarjian HM, Jelinek J, Issa JP. A CpG island methylator phenotype in acute myeloid leukemia independent of IDH mutations and associated with a favorable outcome. Leukemia 2017; 31(10): 2011–2019Google Scholar
  15. 15.
    Saygin C, Carraway HE. Emerging therapies for acute myeloid leukemia. J Hematol Oncol 2017; 10(1): 93Google Scholar
  16. 16.
    Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD, Thiede C, Prior TW, Dohner K, Marcucci G, Lo-Coco F, Klisovic RB, Wei A, Sierra J, Sanz MA, Brandwein JM, de Witte T, Niederwieser D, Appelbaum FR, Medeiros BC, Tallman MS, Krauter J, Schlenk RF, Ganser A, Serve H, Ehninger G, Amadori S, Larson RA, Dohner H. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med 2017; 377(5): 454–464Google Scholar
  17. 17.
    Levis M. Midostaurin approved for FLT3-mutated AML. Blood 2017; 129(26): 3403–3406Google Scholar
  18. 18.
    Tvedt TH, Nepstad I, Bruserud O. Antileukemic effects of midostaurin in acute myeloid leukemia — the possible importance of multikinase inhibition in leukemic as well as nonleukemic stromal cells. Expert Opin Investig Drugs 2017; 26(3): 343–355Google Scholar
  19. 19.
    Patnaik MM. Midostaurin for the treatment of acute myeloid leukemia. Future Oncol 2017; 13(21): 1853–1871Google Scholar
  20. 20.
    Brower V. Venetoclax targets BCL2 in chronic lymphocytic leukaemia. Lancet Oncol 2016; 17(1): e11Google Scholar
  21. 21.
    Roberts AW, Davids MS, Pagel JM, Kahl BS, Puvvada SD, Gerecitano JF, Kipps TJ, Anderson MA, Brown JR, Gressick L, Wong S, Dunbar M, Zhu M, Desai MB, Cerri E, Heitner Enschede S, Humerickhouse RA, Wierda WG, Seymour JF. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med 2016; 374(4): 311–322Google Scholar
  22. 22.
    Davids MS. Targeting BCL-2 in B-cell lymphomas. Blood 2017; 130(9): 1081–1088Google Scholar
  23. 23.
    de Vos S, Flowers CR, Wang D, Swinnen LJ, Fowler N, Reid E, Gifford M, D’Amico D, Dunbar M, Zhu M, Yang J, Enschede SH, Ricker JL, Chien D, Humerickhouse RA, Kozloff M. The BCL-2 inhibitor ABT-199(GDC-0199) in combination with bendamustine and rituximab in patients with relapsed or refractory non-Hodgkin’s lymphoma. Blood 2014; 124(21): 1722Google Scholar
  24. 24.
    DiNardo C, Pollyea D, Pratz K, Thirman MJ, Letai A, Frattini M, Jonas B, Leverson J, Zhu M, Dunbar M, Falotico N, Kirby R, Agarwal S, Mabry M, Potluri J, Humerickhouse RA, Kantarjian HM, Konopleva M. A phase 1b study of venetoclax(ABT-199/ GDC-0199) in combination with decitabine or azacitidine in treatment-naive patients with acute myelogenous leukemia who are ≥ to 65 years and not eligible for standard induction therapy. Blood 2015; 126(23): 327Google Scholar
  25. 25.
    Fischer K, Al-Sawaf O, Fink AM, Dixon M, Bahlo J, Warburton S, Kipps TJ, Weinkove R, Robinson S, Seiler T, Opat S, Owen C, López J, Humphrey K, Humerickhouse R, Tausch E, Frenzel L, Eichhorst B, Wendtner CM, Stilgenbauer S, Langerak AW, van Dongen JJM, Böttcher S, Ritgen M, Goede V, Mobasher M, Hallek M. Venetoclax and obinutuzumab in chronic lymphocytic leukemia. Blood 2017; 129(19): 2702–2705Google Scholar
  26. 26.
    Flinn I, Brunvand M, Dyer MJ, Hillman P, Jones J, Lymp J, Elhamy M, Vosganian G, Huang J, Kipps TJ. Preliminary results of a phase 1b study(GP28331) combining GDC-0199(ABT-199) and obinutuzumab in patients with relapsed/refractory or previously untreated chronic lymphocytic leukemia. Blood 2014; 124(21): 4687Google Scholar
  27. 27.
    Lin T, Strickland SA, Fiedler W, Walter RB, Hou J-Z, Roboz GJ, Enjeti A, Fakhoui KM, Darden DE, Dunbar M, Zhu M, Hayslip JW and Wei AH. Phase Ib/2 study of venetoclax with low-dose cytarabine in treatment-naive patients age ≥ 65 with acute myelogenous leukemia. J Clin Oncol 2016; 34(15_suppl): 7007Google Scholar
  28. 28.
    Ma S, Seymour JF, Lanasa MC, Kipps TJ, Barrientos JC, Davids MS, Mason-Bright T, Rudersdorf N, Yang J, Munasinghe W, Zhu M, Cerri E, Enschede SH, Humerickhouse R, Roberts AW. ABT- 199(GDC-0199) combined with rituximab(R) in patients(pts) with relapsed/refractory(R/R) chronic lymphocytic leukemia(CLL): interim results of a phase 1b study. ASCO Meeting Abstracts 2014; 32(15_suppl): 7013Google Scholar
  29. 29.
    Moreau P, Chanan-Khan AAA, Roberts AW, Agarwal A, Facon T, Kumar S, Touzeau C, Diehl S, Cordero J, Ross JA, Munasinghe W, Zhu M, Salem AH, Leverson J, Maciag PC, Verdugo ME and Harrison SJ. Phase Ib venetoclax combined with bortezomib and dexamethasone in relapsed/refractory multiple myeloma. J Clin Oncol 2016; 34(15_suppl): 8011Google Scholar
  30. 30.
    Portell CA, Axelrod M, Brett LK, Gordon VL, Capaldo B, Xing JC, Bekiranov S, Williams ME, Weber MJ. Synergistic cytotoxicity of ibrutinib and the BCL2 antagonist, ABT-199(GDC-0199) in mantle cell lymphoma(MCL) and chronic lymphocytic leukemia(CLL): molecular analysis reveals mechanisms of target interactions. Blood 2014; 124(21): 509Google Scholar
  31. 31.
    Roberts AW, Ma S, Brander DM, Kipps TJ, Barrientos JC, Davids MS, Anderson MA, Tam C, Mason-Bright T, Rudersdorf NK, Gressick L, Yang J, Munasinghe W, Zhu M, Cerri E, Enschede SH, Humerickhouse RA, Seymour JF. Determination of recommended phase 2 dose of ABT-199(GDC-0199) combined with rituximab(R) in patients with relapsed / refractory(R/R) chronic lymphocytic leukemia(CLL). Blood 2014; 124(21): 325Google Scholar
  32. 32.
    Zelenetz AD, Salles GA, Mason KD, Casulo C, Gouill SL, Sehn LH, Tilly H, Cartron G, Chamuleau MED, Goy A, Tam C, Lugtenburg PJ, Elstrom RL, Hsu W, Mobasher M and Morschhauser F. Phase 1b study of venetoclax plus R- or G-CHOP in patients with B-cell non-Hodgkin lymphoma. J Clin Oncol 2016; 34(15_suppl): 7566Google Scholar
  33. 33.
    Zhao X, Bodo J, Sun D, Durkin L, Lin J, Smith MR, Hsi ED. Combination of ibrutinib with ABT-199: synergistic effects on proliferation inhibition and apoptosis in mantle cell lymphoma cells through perturbation of BTK, AKT and BCL2 pathways. Br J Haematol 2015; 168(5): 765–768Google Scholar
  34. 34.
    Gao L, Sun Y, Meng F, Han M, Huang H, Wu D, Yu L, Ren H, Huang X, Zhang X. Antifungal prophylaxis of patients undergoing allogenetic hematopoietic stem cell transplantation in China: a multicenter prospective observational study. J Hematol Oncol 2016; 9(1): 97Google Scholar
  35. 35.
    Agarwal SK, DiNardo CD, Potluri J, Dunbar M, Kantarjian HM, Humerickhouse RA, Wong SL, Menon RM, Konopleva MY, Salem AH. Management of venetoclax-posaconazole interaction in acute myeloid leukemia patients: evaluation of dose adjustments. Clin Ther 2017; 39(2): 359–367Google Scholar
  36. 36.
    Agarwal SK, Hu B, Chien D, Wong SL, Salem AH. Evaluation of rifampin’s transporter inhibitory and CYP3A inductive effects on the pharmacokinetics of venetoclax, a BCL-2 inhibitor: results of a single- and multiple-dose study. J Clin Pharmacol 2016; 56(11): 1335–1343Google Scholar
  37. 37.
    Agarwal SK, Salem AH, Danilov AV, Hu B, Puvvada S, Gutierrez M, Chien D, Lewis LD, Wong SL. Effect of ketoconazole, a strong CYP3A inhibitor, on the pharmacokinetics of venetoclax, a BCL-2 inhibitor, in patients with non-Hodgkin lymphoma. Br J Clin Pharmacol 2017; 83(4): 846–854Google Scholar
  38. 38.
    Salem AH, Agarwal SK, Dunbar M, Nuthalapati S, Chien D, Freise KJ, Wong SL. Effect of low- and high-fat meals on the pharmacokinetics of venetoclax, a selective first-in-class BCL-2 inhibitor. J Clin Pharmacol 2016; 56(11): 1355–1361Google Scholar
  39. 39.
    Salem AH, Hu B, Freise KJ, Agarwal SK, Sidhu DS, Wong SL. Evaluation of the pharmacokinetic interaction between venetoclax, a selective BCL-2 Inhibitor, and warfarin in healthy volunteers. Clin Drug Investig 2017; 37(3): 303–309Google Scholar
  40. 40.
    Wei A, Strickland SA, Roboz GJ, Hou JZ, Fiedler W, Lin TL, Martinelli G, Walter RB, Enjeti A, Fakouhi K, Darden DE, Dunbar M, Zhu M, Agarwal S, Salem AH, Mabry M, Hayslip J. Safety and efficacy of venetoclax plus low-dose cytarabine in treatment-naive patients aged ≥ 65 years with acute myeloid leukemia. Blood 2016; 128(22): 102Google Scholar
  41. 41.
    Wei A, Strickland SA, Roboz GJ, Hou JZ, Fiedler W, Lin TL, Walter RB, Enjeti A, Chyla B, Popovic R, Fakouhi K, Shah P, Dunbar M, Xu T, Mabry M, Hayslip J. Phase 1/2 study of venetoclax with lowdose cytarabine in treatment-naive, elderly patients with acute myeloid leukemia unfit for intensive chemotherapy: 1-year outcomes. Blood 2017; 130(Suppl 1): 890Google Scholar
  42. 42.
    Konopleva M, Pollyea DA, Potluri J, Chyla B, Hogdal L, Busman T, McKeegan E, Salem AH, Zhu M, Ricker JL, Blum W, DiNardo CD, Kadia T, Dunbar M, Kirby R, Falotico N, Leverson J, Humerickhouse R, Mabry M, Stone R, Kantarjian H, Letai A. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov 2016; 6(10): 1106–1117Google Scholar
  43. 43.
    Bogenberger JM, Kornblau SM, Pierceall WE, Lena R, Chow D, Shi CX, Mantei J, Ahmann G, Gonzales IM, Choudhary A, Valdez R, Camoriano J, Fauble V, Tiedemann RE, Qiu YH, Coombes KR, Cardone M, Braggio E, Yin H, Azorsa DO, Mesa RA, Stewart AK, Tibes R. BCL-2 family proteins as 5-Azacytidine-sensitizing targets and determinants of response in myeloid malignancies. Leukemia 2014; 28(8): 1657–1665Google Scholar
  44. 44.
    Wei A. ABT-199 partners with azacitidine to contest myeloid malignancies. Leuk Lymphoma 2015; 56(1): 8–9Google Scholar
  45. 45.
    DiNardo CD, Pollyea DA, Jonas BA, Konopleva M, Pullarkat V, Wei A, Kantarjian HM, Pigneux A, Recher C, Seymour JF, Dunbar M, Xu T, Mabry M, Potluri J, Pratz K, Letai A. Updated safety and efficacy of venetoclax with decitabine or azacitidine in treatmentnaive, elderly patients with acute myeloid leukemia. Blood 2017; 130(Suppl 1): 2628Google Scholar
  46. 46.
    Bodo J, Zhao X, Durkin L, Souers AJ, Phillips DC, Smith MR, Hsi ED. Acquired resistance to venetoclax(ABT-199) in t(14;18) positive lymphoma cells. Oncotarget 2016; 7(43): 70000–70010Google Scholar
  47. 47.
    Bodo J, Zhao X, Smith MR, Hsi ED. Activity of ABT-199 and acquired resistance in follicular lymphoma cells. Blood 2014; 124(21): 3635Google Scholar
  48. 48.
    Bose P, Gandhi V, Konopleva M. Pathways and mechanisms of venetoclax resistance. Leuk Lymphoma 2017; 58(9): 2026–2039Google Scholar
  49. 49.
    Zhang Q, Pan R, Han L, Shi C, Kurtz SE, Mu H, Ma H, Andreeff M, Leverson J, Tyner JW, Mi Y, Konopleva M. Mechanisms of acquired resistance to venetoclax in preclinical AML models. Blood 2015; 126(23): 328Google Scholar
  50. 50.
    Tahir SK, Smith ML, Hessler P, Rapp LR, Idler KB, Park CH, Leverson JD, Lam LT. Potential mechanisms of resistance to venetoclax and strategies to circumvent it. BMC Cancer 2017; 17(1): 399Google Scholar
  51. 51.
    Wang S, Cang S, Liu D. Third-generation inhibitors targeting EGFR T790M mutation in advanced non-small cell lung cancer. J Hematol Oncol 2016; 9(1): 34Google Scholar
  52. 52.
    Wang S, Song Y, Yan F, Liu D. Mechanisms of resistance to thirdgeneration EGFR tyrosine kinase inhibitors. Front Med 2016; 10(4): 383–388Google Scholar
  53. 53.
    Wang S, Tsui ST, Liu C, Song Y, Liu D. EGFR C797S mutation mediates resistance to third-generation inhibitors in T790M-positive non-small cell lung cancer. J Hematol Oncol 2016; 9(1): 59Google Scholar
  54. 54.
    Wu J, Liu C, Tsui ST, Liu D. Second-generation inhibitors of Bruton tyrosine kinase. J Hematol Oncol 2016; 9(1): 80Google Scholar
  55. 55.
    Wu J, Zhang M, Liu D. Acalabrutinib(ACP-196): a selective second-generation BTK inhibitor. J Hematol Oncol 2016; 9(1): 21Google Scholar
  56. 56.
    Wang S, Song Y, Liu D. EAI045: the fourth-generation EGFR inhibitor overcoming T790M and C797S resistance. Cancer Lett 2017; 385: 51–54Google Scholar
  57. 57.
    Liu D, Mamorska-Dyga A. Syk inhibitors in clinical development for hematological malignancies. J Hematol Oncol 2017; 10(1): 145Google Scholar
  58. 58.
    Jain N, Thompson PA, Ferrajoli A, Burger JA, Borthakur G, Takahashi K, Bose P, Estrov Z, Jabbour EJ, Konopleva M, Alvarado Y, Kadia T, Yilmaz M, DiNardo CD, Ohanian M, Cortes JE, Kanagal-Shamanna R, Patel K, Garg N, Wang X, Fru N, Cruz N, Gandhi V, Plunkett W, Kantarjian HM, Keating MJ, Wierda WG. Combined venetoclax and ibrutinib for patients with previously untreated high-risk CLL, and relapsed/refractory CLL: a phase II trial. Blood 2017; 130(Suppl 1): 429Google Scholar
  59. 59.
    Huang S, Jiang C, Guo H, Wang J, Liu Y, Li C, Lopez E, Zhang H, Lorence EA, Merolle M, Balaji S, Ahmed M, Nomie K, Zhang L, Wang M. Resistance mechanisms underlying venetoclax resistance in mantle cell lymphoma. Blood 2017; 130(Suppl 1): 2749Google Scholar
  60. 60.
    Frenzel LP, Herling CD, Abedpour N, Weiss J, Mayer P, Cartolano M, Berg V, Kutsch N, Cramer P, Wendtner CM, Persigehl T, Saleh A, Altmüller J, Nürnberg P, Pallasch C, Achter V, Lang U, Eichhorst BF, Castiglione R, Schaefer SC, Buettner R, Kreuzer KA, Reinhardt HC, Hallek MJ, Peifer M. Mechanisms of venetoclax resistance in chronic lymphocytic leukemia. Blood 2017; 130(Suppl 1): 263Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bingshan Liu
    • 1
  • Roshni Narurkar
    • 2
  • Madhura Hanmantgad
    • 2
  • Wahib Zafar
    • 2
  • Yongping Song
    • 1
  • Delong Liu
    • 1
    Email author
  1. 1.The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer HospitalZhengzhouChina
  2. 2.Department of MedicineNew York Medical College and Westchester Medical CenterValhallaUSA

Personalised recommendations