Advertisement

Frontiers of Medicine

, Volume 13, Issue 2, pp 259–266 | Cite as

Clinical characteristics in lymphangioleiomyomatosis-related pulmonary hypertension: an observation on 50 patients

  • Xiuxiu Wu
  • Wenshuai Xu
  • Jun Wang
  • Xinlun Tian
  • Zhuang Tian
  • Kaifeng XuEmail author
Research Article

Abstract

Lymphangioleiomyomatosis (LAM) is a rare diffuse cystic lung disease. Knowledge on LAM-related pulmonary hypertension (PH) is limited. This study aimed to analyze the clinical characteristics of LAM with elevated pulmonary artery pressure (PAP) and evaluate the potential efficacy of sirolimus. The study involved 50 LAM patients who underwent echocardiography. According to the tricuspid regurgitation velocity (TRV), these patients were divided into the TRV ⩽ 2.8 m/s group and TRV > 2.8 m/s group. Both groups comprised 25 females with an average age of 38.6 ± 8.1 and 41.5 ± 8.9 years. In the TRV > 2.8 m/s group, the estimated systolic PAP (SPAP) was significantly elevated (52.08 ± 12.45 mmHg vs. 30.24 ± 5.25 mmHg, P < 0.01). Linear analysis showed that SPAP was correlated with forced expiratory volume in 1 s (FEV1), diffusing capacity of the lungs for carbon monoxide, alveolar arterial oxygen gradient (PA-aO2), and 6 min walking distance (r =–0.392, –0.351, 0.450, and –0.591, respectively; P < 0.05), in which PA-aO2 was a risk factor for SPAP elevation (β = 0.064, OR = 1.066, P < 0.05). Moreover, in 10 patients who received sirolimus therapy, SPAP decreased from 57.0 12.6 mmHg to 35.2 ± 11.1 mmHg. The study showed that LAM patients with PH exhibit poor pulmonary function and hypoxemia and may benefit from sirolimus treatment.

Keywords

lymphangioleiomyomatosis pulmonary hypertension pulmonary function hypoxemia sirolimus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Beijing Municipal Science and Technology Project (No. Z151100003915126) and the National Key Research and Development Program of China (No. 2016YFC-0901502).

References

  1. 1.
    Harknett EC, Chang WY, Byrnes S, Johnson J, Lazor R, Cohen MM, Gray B, Geiling S, Telford H, Tattersfield AE, Hubbard RB, Johnson SR. Use of variability in national and regional data to estimate the prevalence of lymphangioleiomyomatosis. QJM 2011; 104(11): 971–979CrossRefGoogle Scholar
  2. 2.
    Johnson SR, Taveira-DaSilva AM, Moss J. Lymphangioleiomyomatosis. Clin Chest Med 2016; 37(3): 389–403CrossRefGoogle Scholar
  3. 3.
    Taveira-DaSilva AM, Hathaway OM, Sachdev V, Shizukuda Y, Birdsall CW, Moss J. Pulmonary artery pressure in lymphangioleiomyomatosis: an echocardiographic study. Chest 2007; 132(5): 1573–1578CrossRefGoogle Scholar
  4. 4.
    McCormack FX. Lymphangioleiomyomatosis: a clinical update. Chest 2008; 133(2): 507–516CrossRefGoogle Scholar
  5. 5.
    Taveira-DaSilva AM, Moss J. Clinical features, epidemiology, and therapy of lymphangioleiomyomatosis. Clin Epidemiol 2015; 7: 249–257CrossRefGoogle Scholar
  6. 6.
    Harari S, Torre O, Moss J. Lymphangioleiomyomatosis: what do we know and what are we looking for? Eur Respir Rev 2011; 20(119): 34–44CrossRefGoogle Scholar
  7. 7.
    Cottin V. Pulmonary hypertension in chronic respiratory diseases. Presse Med 2014; 43(9): 945–956CrossRefGoogle Scholar
  8. 8.
    Harari S, Simonneau G, De Juli E, Brenot F, Cerrina J, Colombo P, Gronda E, Micallef E, Parent F, Dartevelle P. Prognostic value of pulmonary hypertension in patients with chronic interstitial lung disease referred for lung or heart-lung transplantation. J Heart Lung Transplant 1997; 16(4): 460–463Google Scholar
  9. 9.
    Freitas CSG, Baldi BG, Jardim C, Araujo MS, Sobral JB, Heiden GI, Kairalla RA, Souza R, Carvalho CRR. Pulmonary hypertension in lymphangioleiomyomatosis: prevalence, severity and the role of carbon monoxide diffusion capacity as a screening method. Orphanet J Rare Dis 2017; 12(1): 74CrossRefGoogle Scholar
  10. 10.
    Barnett CF, Alvarez P, Park MH. Pulmonary arterial hypertension: diagnosis and treatment. Cardiol Clin 2016; 34(3): 375–389CrossRefGoogle Scholar
  11. 11.
    Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, Ghofrani A, Gomez Sanchez MA, Hansmann G, Klepetko W, Lancellotti P, Matucci M, McDonagh T, Pierard LA, Trindade PT, Zompatori M, Hoeper M. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J 2015; 46 (4): 903–975CrossRefGoogle Scholar
  12. 12.
    Johnson SR, Cordier JF, Lazor R, Cottin V, Costabel U, Harari S, Reynaud-Gaubert M, Boehler A, Brauner M, Popper H, Bonetti F, Kingswood C; Review Panel of the ERS LAM Task Force. European Respiratory Society guidelines for the diagnosis and management of lymphangioleiomyomatosis. Eur Respir J 2010; 35 (1): 14–26CrossRefGoogle Scholar
  13. 13.
    Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten CP, Gustafsson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger J; ATS/ERS Task Force. Standardisation of spirometry. Eur Respir J 2005; 26(2): 319–338CrossRefGoogle Scholar
  14. 14.
    Nadrous HF, Pellikka PA, Krowka MJ, Swanson KL, Chaowalit N, Decker PA, Ryu JH. Pulmonary hypertension in patients with idiopathic pulmonary fibrosis. Chest 2005; 128(4): 2393–2399CrossRefGoogle Scholar
  15. 15.
    McCormack FX, Gupta N, Finlay GR, Young LR, Taveira-DaSilva AM, Glasgow CG, Steagall WK, Johnson SR, Sahn SA, Ryu JH, Strange C, Seyama K, Sullivan EJ, Kotloff RM, Downey GP, Chapman JT, Han MK, D’Armiento JM, Inoue Y, Henske EP, Bissler JJ, Colby TV, Kinder BW, Wikenheiser-Brokamp KA, Brown KK, Cordier JF, Meyer C, Cottin V, Brozek JL, Smith K, Wilson KC, Moss J; ATS/JRS Committee on Lymphangioleiomyomatosis. Official American Thoracic Society/Japanese Respiratory Society Clinical Practice Guidelines: Lymphangioleiomyomatosis Diagnosis and Management. Am J Respir Crit Care Med 2016; 194 (6): 748–761CrossRefGoogle Scholar
  16. 16.
    Cottin V, Harari S, Humbert M, Mal H, Dorfmüller P, Jaïs X, Reynaud-Gaubert M, Prevot G, Lazor R, Taillé C, Lacronique J, Zeghmar S, Simonneau G, Cordier JF; Groupe d'Etudes et de Recherche sur les Maladies "Orphelines" Pulmonaires (GERM" O"P). Pulmonary hypertension in lymphangioleiomyomatosis: characteristics in 20 patients. Eur Respir J 2012; 40(3): 630–640CrossRefGoogle Scholar
  17. 17.
    Nathan SD, Hassoun PM. Pulmonary hypertension due to lung disease and/or hypoxia. Clin Chest Med 2013; 34(4): 695–705CrossRefGoogle Scholar
  18. 18.
    Naeije R, Dedobbeleer C. Pulmonary hypertension and the right ventricle in hypoxia. Exp Physiol 2013; 98(8): 1247–1256CrossRefGoogle Scholar
  19. 19.
    Nakahara Y, Taniguchi H, Kimura T, Kondoh Y, Arizono S, Nishimura K, Sakamoto K, Ito S, Ando M, Hasegawa Y. Exercise hypoxaemia as a predictor of pulmonary hypertension in COPD patients without severe resting hypoxaemia. Respirology 2017; 22 (1): 120–125CrossRefGoogle Scholar
  20. 20.
    Wang T, Mao Y, Sun Y, Hou W, Feng Y, Qu H. Pulmonary hypertension in patients with chronic obstructive pulmonary disease: clinical characteristics and risk factors. Chin J Intern Med (Zhonghua Nei Ke Za Zhi) 2015; 54(12): 1037–1040 (in Chinese)Google Scholar
  21. 21.
    Meyer FJ, Ewert R, Hoeper MM, Olschewski H, Behr J, Winkler J, Wilkens H, Breuer C, Kübler W, Borst MM; German PPH Study Group. Peripheral airway obstruction in primary pulmonary hypertension. Thorax 2002; 57(6): 473–476CrossRefGoogle Scholar
  22. 22.
    Sun XG, Hansen JE, Oudiz RJ, Wasserman K. Pulmonary function in primary pulmonary hypertension. J Am Coll Cardiol 2003; 41(6): 1028–1035CrossRefGoogle Scholar
  23. 23.
    Lai YC, Potoka KC, Champion HC, Mora AL, Gladwin MT. Pulmonary arterial hypertension: the clinical syndrome. Circ Res 2014; 115(1): 115–130CrossRefGoogle Scholar
  24. 24.
    Seeger W, Adir Y, Barberà JA, Champion H, Coghlan JG, Cottin V, De Marco T, Galiè N, Ghio S, Gibbs S, Martinez FJ, Semigran MJ, Simonneau G, Wells AU, Vachiéry JL. Pulmonary hypertension in chronic lung diseases. J Am Coll Cardiol 2013; 62(25Suppl): D109–D116CrossRefGoogle Scholar
  25. 25.
    Ruocco G, Cekorja B, Rottoli P, Refini RM, Pellegrini M, Di Tommaso C, Del Castillo G, Franci B, Nuti R, Palazzuoli A. Role of BNP and echo measurement for pulmonary hypertension recognition in patients with interstitial lung disease: an algorithm application model. Respir Med 2015; 109(3): 406–415CrossRefGoogle Scholar
  26. 26.
    Fisher MR, Criner GJ, Fishman AP, Hassoun PM, Minai OA, Scharf SM, Fessler HE; NETT Research Group. Estimating pulmonary artery pressures by echocardiography in patients with emphysema. Eur Respir J 2007; 30(5): 914–921CrossRefGoogle Scholar
  27. 27.
    Freitas CS, Baldi BG, Araújo MS, Heiden GI, Kairalla RA, Carvalho CR. Use of sirolimus in the treatment of lymphangioleiomyomatosis: favorable responses in patients with different extrapulmonary manifestations. J Bras Pneumol 2015; 41(3): 275–280CrossRefGoogle Scholar
  28. 28.
    McCormack FX, Inoue Y, Moss J, Singer LG, Strange C, Nakata K, Barker AF, Chapman JT, Brantly ML, Stocks JM, Brown KK, Lynch JP, Goldberg HJ, Young LR, Kinder BW, Downey GP, Sullivan EJ, Colby TV, McKay RT, Cohen MM, Korbee L, Taveira-DaSilva AM, Lee HS, Krischer JP, Trapnell BC; National Institutes of Health Rare Lung Diseases Consortium; MILES Trial Group. Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N Engl J Med 2011; 364(17): 1595–1606CrossRefGoogle Scholar
  29. 29.
    Goncharov DA, Kudryashova TV, Ziai H, Ihida-Stansbury K, DeLisser H, Krymskaya VP, Tuder RM, Kawut SM, Goncharova EA. Mammalian target of rapamycin complex 2 (mTORC2) coordinates pulmonary artery smooth muscle cell metabolism, proliferation, and survival in pulmonary arterial hypertension. Circulation 2014; 129(8): 864–874CrossRefGoogle Scholar
  30. 30.
    Wang W, Liu J, Ma A, Miao R, Jin Y, Zhang H, Xu K, Wang C, Wang J. mTORC1 is involved in hypoxia-induced pulmonary hypertension through the activation of Notch3. J Cell Physiol 2014; 229(12): 2117–2125CrossRefGoogle Scholar
  31. 31.
    Wang AP, Li XH, Yang YM, Li WQ, Zhang W, Hu CP, Zhang Z, Li YJ. A critical role of the mTOR/eIF2α pathway in hypoxia-induced pulmonary hypertension. PLoS One 2015; 10(6): e0130806CrossRefGoogle Scholar
  32. 32.
    Krymskaya VP, Snow J, Cesarone G, Khavin I, Goncharov DA, Lim PN, Veasey SC, Ihida-Stansbury K, Jones PL, Goncharova EA. mTOR is required for pulmonary arterial vascular smooth muscle cell proliferation under chronic hypoxia. FASEB J 2011; 25(6): 1922–1933CrossRefGoogle Scholar
  33. 33.
    Houssaini A, Abid S, Mouraret N, Wan F, Rideau D, Saker M, Marcos E, Tissot CM, Dubois-Randé JL, Amsellem V, Adnot S. Rapamycin reverses pulmonary artery smooth muscle cell proliferation in pulmonary hypertension. Am J Respir Cell Mol Biol 2013; 48(5): 568–577CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiuxiu Wu
    • 1
  • Wenshuai Xu
    • 1
  • Jun Wang
    • 1
  • Xinlun Tian
    • 1
  • Zhuang Tian
    • 2
  • Kaifeng Xu
    • 1
    Email author
  1. 1.Department of Respiratory Medicine, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
  2. 2.Department of Cardiology, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina

Personalised recommendations