Advertisement

Frontiers of Medicine

, Volume 13, Issue 2, pp 277–284 | Cite as

In silico design of novel proton-pump inhibitors with reduced adverse effects

  • Xiaoyi Li
  • Hong Kang
  • Wensheng Liu
  • Sarita Singhal
  • Na Jiao
  • Yong Wang
  • Lixin ZhuEmail author
  • Ruixin ZhuEmail author
Research Article

Abstract

The development of new proton-pump inhibitors (PPIs) with less adverse effects by lowering the pKa values of nitrogen atoms in pyrimidine rings has been previously suggested by our group. In this work, we proposed that new PPIs should have the following features: (1) number of ring II = number of ring I + 1; (2) preferably five, six, or seven-membered heteroatomic ring for stability; and (3) 1 < pKa1 < 4. Six molecular scaffolds based on the aforementioned criteria were constructed, and R groups were extracted from compounds in extensive data sources. A virtual molecule dataset was established, and the pKa values of specific atoms on the molecules in the dataset were calculated to select the molecules with required pKa values. Drug-likeness screening was further conducted to obtain the candidates that significantly reduced the adverse effects of long-term PPI use. This study provided insights and tools for designing targeted molecules in silico that are suitable for practical applications.

Keywords

proton-pump inhibitor adverse effect pharmacological mechanism toxicological mechanism pKa calculation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 31200986 and 41530105) (to RZ), Natural Science Foundation, the Shanghai Committee of Science and Technology (No. 16ZR1449800) (to RZ), the Fundamental Research Funds for the Central Universities (Nos. 10247201546 and 2000219083) (to RZ), a departmental start-up fund (to LZ), the Peter and Tommy Fund, Inc., Buffalo, NY (to LZ), Funds from the University at Buffalo Community of Excellence in Genome, Environment and Microbiome (GEM) (to LZ) and UTHealth Innovation for Cancer Prevention Research Training Program Post-doctoral Fellowship (Cancer Prevention and Research Institute of Texas, grant #RP160015) (to HK). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Supplementary material

11684_2018_630_MOESM1_ESM.pdf (18.4 mb)
Codes of Methods
11684_2018_630_MOESM2_ESM.pdf (121 kb)
Supplementary Table S1: Novel proton pump inhibitors with reduced adverse effect

References

  1. 1.
    Martín de Argila C. Safety of potent gastric acid inhibition. Drugs 2005; 65(Suppl 1): 97–104CrossRefGoogle Scholar
  2. 2.
    Hetzel DJ, Dent J, Reed WD, Narielvala FM, Mackinnon M, McCarthy JH, Mitchell B, Beveridge BR, Laurence BH, Gibson GG, Grant AK, Shearman DJC, Whitehead R, Buckle PJ. Healing and relapse of severe peptic esophagitis after treatment with omeprazole. Gastroenterology 1988; 95(4): 903–912CrossRefGoogle Scholar
  3. 3.
    Hagiwara T, Mukaisho K, Nakayama T, Sugihara H, Hattori T. Long-term proton pump inhibitor administration worsens atrophic corpus gastritis and promotes adenocarcinoma development in Mongolian gerbils infected with Helicobacter pylori. Gut 2011; 60 (5): 624–630CrossRefGoogle Scholar
  4. 4.
    Liu W, Baker SS, Trinidad J, Burlingame AL, Baker RD, Forte JG, Virtuoso LP, Egilmez NK, Zhu L. Inhibition of lysosomal enzyme activities by proton pump inhibitors. J Gastroenterol 2013; 48(12): 1343–1352CrossRefGoogle Scholar
  5. 5.
    Polimeni G, Cutroneo P, Gallo A, Gallo S, Spina E, Caputi AP. Rabeprazole and psychiatric symptoms. Ann Pharmacother 2007; 41(7): 1315–1317CrossRefGoogle Scholar
  6. 6.
    Sarzynski E, Puttarajappa C, Xie Y, Grover M, Laird-Fick H. Association between proton pump inhibitor use and anemia: a retrospective cohort study. Dig Dis Sci 2011; 56(8): 2349–2353CrossRefGoogle Scholar
  7. 7.
    Bowlby HA, Dickens GR. Angioedema and urticaria associated with omeprazole confirmed by drug rechallenge. Pharmacotherapy 1994; 14(1): 119–122CrossRefGoogle Scholar
  8. 8.
    Wu D, Qiu T, Zhang Q, Kang H, Yuan S, Zhu L, Zhu R. Systematic toxicity mechanism analysis of proton pump inhibitors: an in silico study. Chem Res Toxicol 2015; 28(3): 419–430CrossRefGoogle Scholar
  9. 9.
    Landrum G. Rdkit: a software suite for cheminformatics, computational chemistry, and predictive modeling. 2013Google Scholar
  10. 10.
    Settimo L, Bellman K, Knegtel RM. Comparison of the accuracy of experimental and predicted pKa values of basic and acidic compounds. Pharm Res 2014; 31(4): 1082–1095CrossRefGoogle Scholar
  11. 11.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001; 46(1-3): 3–26CrossRefGoogle Scholar
  12. 12.
    Olbe L, Carlsson E, Lindberg P. A proton-pump inhibitor expedition: the case histories of omeprazole and esomeprazole. Nat Rev Drug Discov 2003; 2(2): 132–139CrossRefGoogle Scholar
  13. 13.
    Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, Arndt D, Wilson M, Neveu V, Tang A, Gabriel G, Ly C, Adamjee S, Dame ZT, Han B, Zhou Y, Wishart DS. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 2014; 42(Database issue D1): D1091–D1097CrossRefGoogle Scholar
  14. 14.
    Chen CY. TCM Database@Taiwan: the world’s largest traditional Chinese medicine database for drug screening in silico. PLoS One 2011; 6(1): e15939CrossRefGoogle Scholar
  15. 15.
    Zhu F, Shi Z, Qin C, Tao L, Liu X, Xu F, Zhang L, Song Y, Liu X, Zhang J, Han B, Zhang P, Chen Y. Therapeutic target database update 2012: a resource for facilitating target-oriented drug discovery. Nucleic Acids Res 2012; 40(Database issue): D1128–D1136CrossRefGoogle Scholar
  16. 16.
    Reymond JL, Ruddigkeit L, Blum L, van Deursen R. The enumeration of chemical space. Wiley Interdiscip Rev Comput Mol Sci 2012; 2(5): 717–733CrossRefGoogle Scholar
  17. 17.
    Ruddigkeit L, van Deursen R, Blum LC, Reymond JL. Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J Chem Inf Model 2012; 52(11): 2864–2875CrossRefGoogle Scholar
  18. 18.
    Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R, Aziat F, Dong E, Bouatra S, Sinelnikov I, Arndt D, Xia J, Liu P, Yallou F, Bjorndahl T, Perez-Pineiro R, Eisner R, Allen F, Neveu V, Greiner R, Scalbert A. HMDB 3.0 — The Human Metabolome Database in 2013. Nucleic Acids Res 2013; 41(Database issue): D801–D807CrossRefGoogle Scholar
  19. 19.
    Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 2012; 40(Database issue D1): D109–D114CrossRefGoogle Scholar
  20. 20.
    Wiener A, Shudler M, Levit A, Niv MY. BitterDB: a database of bitter compounds. Nucleic Acids Res 2012; 40(Database issue): D413–D419CrossRefGoogle Scholar
  21. 21.
    Ahmed J, Meinel T, Dunkel M, Murgueitio MS, Adams R, Blasse C, Eckert A, Preissner S, Preissner R. CancerResource: a comprehensive database of cancer-relevant proteins and compound interactions supported by experimental knowledge. Nucleic Acids Res 2011; 39 (Database issue suppl_1): D960–D967CrossRefGoogle Scholar
  22. 22.
    Wishart D, Arndt D, Pon A, Sajed T, Guo AC, Djoumbou Y, Knox C, Wilson M, Liang Y, Grant J, Liu Y, Goldansaz SA, Rappaport SM. T3DB: the toxic exposome database. Nucleic Acids Res 2015; 43(Database issue): D928–D934CrossRefGoogle Scholar
  23. 23.
    Lim E, Pon A, Djoumbou Y, Knox C, Shrivastava S, Guo AC, Neveu V, Wishart DS. T3DB: a comprehensively annotated database of common toxins and their targets. Nucleic Acids Res 2010; 38(Database issue suppl_1): D781–D786CrossRefGoogle Scholar
  24. 24.
    Song H, Chu Q, Yan F, Yang Y, Han W, Zheng X. Red pitaya betacyanins protects from diet-induced obesity, liver steatosis and insulin resistance in association with modulation of gut microbiota in mice. J Gastroenterol Hepatol 2016; 31(8): 1462–1469CrossRefGoogle Scholar
  25. 25.
    Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, Uchimaya M. Epik: a software program for pK( a ) prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des 2007; 21(12): 681–691CrossRefGoogle Scholar
  26. 26.
    Klicić JJ, Friesner RA, Liu SY, Guida WC. Accurate prediction of acidity constants in aqueous solution via density functional theory and self-consistent reaction field methods. J Phys Chem A 2002; 106(7): 1327–1335CrossRefGoogle Scholar
  27. 27.
    Balogh GT, Gyarmati B, Nagy B, Molnar L, Keseru GM. Comparative evaluation of in silico pK(a) prediction tools on the Gold Standard Dataset. QSAR Comb Sci 2009; 28(10): 1148–1155CrossRefGoogle Scholar
  28. 28.
    Vellay S, Miller Latimer N, Paillard G. Interactive text mining with Pipeline Pilot: a bibliographic web-based tool for PubMed. Infect Disord Drug Targets 2009; 9(3): 366–374CrossRefGoogle Scholar
  29. 29.
    Rupp M, Körner R, V. Tetko I. Predicting the pKa of small molecule. Comb Chem High Throughput Screen 2011; 14(5): 307–327CrossRefGoogle Scholar
  30. 30.
    Grüber C, Buss V. Quantum-mechanically calculated properties for the development of quantitative structure-activity relationships (QSAR’S). pKa-values of phenols and aromatic and aliphatic carboxylic acids. Chemosphere 1989; 19(10-11): 1595–1609CrossRefGoogle Scholar
  31. 31.
    Walters WP, Stahl MT, Murcko MA. Virtual screening — an overview. Drug Discov Today 1998; 3(4): 160–178CrossRefGoogle Scholar
  32. 32.
    Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL. Quantifying the chemical beauty of drugs. Nat Chem 2012; 4(2): 90–98CrossRefGoogle Scholar
  33. 33.
    Tian S, Wang J, Li Y, Li D, Xu L, Hou T. The application of in silico drug-likeness predictions in pharmaceutical research. Adv Drug Deliv Rev 2015; 86: 2–10CrossRefGoogle Scholar
  34. 34.
    Durand C, Willett KC, Desilets AR. Proton pump inhibitor use in hospitalized patients: is overutilization becoming a problem? Clin Med Insights Gastroenterol 2012; 5: CGast. S9588CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaoyi Li
    • 1
  • Hong Kang
    • 2
  • Wensheng Liu
    • 3
  • Sarita Singhal
    • 3
  • Na Jiao
    • 1
  • Yong Wang
    • 4
  • Lixin Zhu
    • 3
    • 5
    Email author
  • Ruixin Zhu
    • 1
    Email author
  1. 1.Department of Gastroenterology, Shanghai East Hospital, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
  2. 2.School of Biomedical InformaticsThe University of Texas Health Science Center at HoustonHoustonUSA
  3. 3.Digestive Diseases and Nutrition Center, Department of PediatricsThe State University of New York at BuffaloBuffaloUSA
  4. 4.Basic Medical CollegeBeijing University of Chinese MedicineBeijingChina
  5. 5.Genome, Environment and Microbiome Community of ExcellenceThe State University of New York at BuffaloBuffaloUSA

Personalised recommendations