Advertisement

Frontiers of Medicine

, Volume 13, Issue 2, pp 229–237 | Cite as

Mutation profiling of 16 candidate genes in de novo acute myeloid leukemia patients

  • Yang Zhang
  • Fang Wang
  • Xue Chen
  • Wenjing Liu
  • Jiancheng Fang
  • Mingyu Wang
  • Wen Teng
  • Panxiang Cao
  • Hongxing LiuEmail author
Research Article

Abstract

This retrospective analysis aimed to investigate the mutation profile of 16 common mutated genes in de novo acute myeloid leukemia (AML) patients. A total of 259 patients who were diagnosed of de novo AML were enrolled in this study. Mutation profiling of 16 candidate genes were performed in bone marrow samples by using Sanger sequencing.We identified at least 1 mutation in 199 of the 259 samples (76.8%), and 2 or more mutations in 31.7% of samples. FLT3-ITD was the most common mutated gene (16.2%, 42/259), followed by CEBPA (15.1%, 39/259), NRAS (14.7%, 38/259), and NPM1 (13.5%, 35/259). Concurrence was observed in 97.1% of the NPM1 mutated cases and in 29.6% of the double mutated CEBPA cases. Distinct patterns of co-occurrence were observed for different hotspot mutations within the IDH2 gene: R140 mutations were associated with NPM1 and/or FLT3-ITD mutations, whereas R172 mutations co-occurred with DNMT3A mutations only. Concurrence was also observed in 86.6% of epigenetic regulation genes, most of which co-occurred with NPM1 mutations. The results showed certain rules in the mutation profiling and concurrence of AML patients, which was related to the function classification of genes. Defining the mutation spectrum and mutation pattern of AML will contribute to the comprehensive assessment of patients and identification of new therapeutic targets.

Keywords

leukemia myeloid acute gene mutation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Xiangping Han and Yuanli Xu from Pathology & Laboratory Medicine Division of Hebei Yanda Lu Daopei Hospital for technical supports.

Supplementary material

11684_2018_616_MOESM1_ESM.pdf (69 kb)
Supplementary Table 1 Detection rang of 16 genes

References

  1. 1.
    Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med 2015; 373(12): 1136–1152CrossRefGoogle Scholar
  2. 2.
    Metzeler KH, Herold T, Rothenberg-Thurley M, Amler S, Sauerland MC, Görlich D, Schneider S, Konstandin NP, Dufour A, Bräundl K, Ksienzyk B, Zellmeier E, Hartmann L, Greif PA, Fiegl M, Subklewe M, Bohlander SK, Krug U, Faldum A, Berdel WE, Wörmann B, Büchner T, Hiddemann W, Braess J, Spiekermann K; AMLCG Study Group. Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood 2016; 128(5): 686–698CrossRefGoogle Scholar
  3. 3.
    Grimwade D, Ivey A, Huntly BJP. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. Blood 2016; 127(1): 29–41CrossRefGoogle Scholar
  4. 4.
    Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M, Vardiman JW. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016; 127(20): 2391–2405CrossRefGoogle Scholar
  5. 5.
    Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz AD, Jaffe ES. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016; 127(20): 2375–2390CrossRefGoogle Scholar
  6. 6.
    Liu HX, Wang F, Teng W, Lin YH, Yang JF, Zhang X, Yin Q, Chen X, Zhu P, Tong CR. Mutaome profiling and retrospective mutaome profiling using archived bone marrow smear in AML. Blood 2013; 122(21): 4983Google Scholar
  7. 7.
    Pan J, Zhang Y, Zhao YL, Yang JF, Zhang JP, Liu HX, Wu T, Tong CR. Impact of clinical factors on outcome of leukemia patients with TLS-ERG fusion gene. Leuk Lymphoma 2017; 58(7): 1655–1663CrossRefGoogle Scholar
  8. 8.
    Saygin C, Carraway HE. Emerging therapies for acute myeloid leukemia. J Hematol Oncol 2017; 10(1): 93CrossRefGoogle Scholar
  9. 9.
    Li Y, Xu Q, Lv N, Wang L, Zhao H, Wang X, Guo J, Chen C, Li Y, Yu L. Clinical implications of genome-wide DNA methylation studies in acute myeloid leukemia. J Hematol Oncol 2017; 10(1): 41CrossRefGoogle Scholar
  10. 10.
    Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, Potter NE, Heuser M, Thol F, Bolli N, Gundem G, Van Loo P, Martincorena I, Ganly P, Mudie L, McLaren S, O’Meara S, Raine K, Jones DR, Teague JW, Butler AP, Greaves MF, Ganser A, Döhner K, Schlenk RF, Döhner H, Campbell PJ. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 2016; 374(23): 2209–2221CrossRefGoogle Scholar
  11. 11.
    Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V, Kennedy JA, Schimmer AD, Schuh AC, Yee KW, McLeod JL, Doedens M, Medeiros JJF, Marke R, Kim HJ, Lee K, McPherson JD, Hudson TJ; HALT Pan-Leukemia Gene Panel Consortium, Brown AM, Yousif F, Trinh QM, Stein LD, Minden MD, Wang JC, Dick JE. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 2014; 506(7488): 328–333CrossRefGoogle Scholar
  12. 12.
    Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, Chambert K, Mick E, Neale BM, Fromer M, Purcell SM, Svantesson O, Landén M, Höglund M, Lehmann S, Gabriel SB, Moran JL, Lander ES, Sullivan PF, Sklar P, Grönberg H, Hultman CM, McCarroll SA. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 2014; 371(26): 2477–2487CrossRefGoogle Scholar
  13. 13.
    Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, Lindsley RC, Mermel CH, Burtt N, Chavez A, Higgins JM, Moltchanov V, Kuo FC, Kluk MJ, Henderson B, Kinnunen L, Koistinen HA, Ladenvall C, Getz G, Correa A, Banahan BF, Gabriel S, Kathiresan S, Stringham HM, McCarthy MI, Boehnke M, Tuomilehto J, Haiman C, Groop L, Atzmon G, Wilson JG, Neuberg D, Altshuler D, Ebert BL. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 2014; 371(26): 2488–2498CrossRefGoogle Scholar
  14. 14.
    Cancer Genome Atlas Research Network, Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson A, Hoadley K, Triche TJ Jr, Laird PW, Baty JD, Fulton LL, Fulton R, Heath SE, Kalicki-Veizer J, Kandoth C, Klco JM, Koboldt DC, Kanchi KL, Kulkarni S, Lamprecht TL, Larson DE, Lin L, Lu C, McLellan MD, McMichael JF, Payton J, Schmidt H, Spencer DH, Tomasson MH, Wallis JW, Wartman LD, Watson MA, Welch J, Wendl MC, Ally A, Balasundaram M, Birol I, Butterfield Y, Chiu R, Chu A, Chuah E, Chun HJ, Corbett R, Dhalla N, Guin R, He A, Hirst C, Hirst M, Holt RA, Jones S, Karsan A, Lee D, Li HI, Marra MA, Mayo M, Moore RA, Mungall K, Parker J, Pleasance E, Plettner P, Schein J, Stoll D, Swanson L, Tam A, Thiessen N, Varhol R, Wye N, Zhao Y, Gabriel S, Getz G, Sougnez C, Zou L, Leiserson MD, Vandin F, Wu HT, Applebaum F, Baylin SB, Akbani R, Broom BM, Chen K, Motter TC, Nguyen K, Weinstein JN, Zhang N, Ferguson ML, Adams C, Black A, Bowen J, Gastier-Foster J, Grossman T, Lichtenberg T, Wise L, Davidsen T, Demchok JA, Shaw KR, Sheth M, Sofia HJ, Yang L, Downing JR, Eley G. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368 (22): 2059–2074CrossRefGoogle Scholar
  15. 15.
    Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, Le Beau MM, Hellström-Lindberg E, Tefferi A, Bloomfield CD. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009; 114 (5): 937–951CrossRefGoogle Scholar
  16. 16.
    Döhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK, Dombret H, Fenaux P, Grimwade D, Larson RA, Lo-Coco F, Naoe T, Niederwieser D, Ossenkoppele GJ, Sanz MA, Sierra J, Tallman MS, Löwenberg B, Bloomfield CD; European LeukemiaNet. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010; 115(3): 453–474CrossRefGoogle Scholar
  17. 17.
    Wang M, Yang C, Zhang L, Schaar DG. Molecular mutations and their cooccurrences in cytogenetically normal acute myeloid leukemia. Stem Cells Int 2017; 2017: 1–11Google Scholar
  18. 18.
    Fasan A, Haferlach C, Alpermann T, Jeromin S, Grossmann V, Eder C, Weissmann S, Dicker F, Kohlmann A, Schindela S, Kern W, Haferlach T, Schnittger S. The role of different genetic subtypes of CEBPA mutated AML. Leukemia 2014; 28(4): 794–803CrossRefGoogle Scholar
  19. 19.
    Grossmann V, Haferlach C, Nadarajah N, Fasan A, Weissmann S, Roller A, Eder C, Stopp E, Kern W, Haferlach T, Kohlmann A, Schnittger S. CEBPA double-mutated acute myeloid leukaemia harbours concomitant molecular mutations in 76.8% of cases with TET2 and GATA2 alterations impacting prognosis. Br J Haematol 2013; 161(5): 649–658CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yang Zhang
    • 1
  • Fang Wang
    • 1
  • Xue Chen
    • 1
  • Wenjing Liu
    • 1
  • Jiancheng Fang
    • 1
  • Mingyu Wang
    • 1
  • Wen Teng
    • 1
  • Panxiang Cao
    • 1
  • Hongxing Liu
    • 1
    Email author
  1. 1.Pathology & Laboratory Medicine DivisionHebei Yanda Lu Daopei HospitalLang fangChina

Personalised recommendations