Advertisement

Frontiers of Medicine

, Volume 12, Issue 3, pp 262–268 | Cite as

γδ T cells in liver diseases

  • Xuefu Wang
  • Zhigang Tian
Review

Abstract

γδ T cells display unique developmental, distributional, and functional patterns and can rapidly respond to various insults and contribute to diverse diseases. Different subtypes of γδ T cells are produced in the thymus prior to their migration to peripheral tissues. γδ T cells are enriched in the liver and exhibit liver-specific features. Accumulating evidence reveals that γδ T cells play important roles in liver infection, non-alcoholic fatty liver disease, autoimmune hepatitis, liver fibrosis and cirrhosis, and liver cancer and regeneration. In this study, we review the properties of hepatic γδ T cells and summarize the roles of γδ T cells in liver diseases. We believe that determining the properties and functions of γδ T cells in liver diseases enhances our understanding of the pathogenesis of liver diseases and is useful for the design of novel γδ T cell-based therapeutic regimens for liver diseases.

Keywords

γδT cells liver infection non-alcoholic fatty liver disease autoimmune hepatitis liver fibrosis and cirrhosis liver cancer liver regeneration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Anhui Natural Science Foundation (No. 1708085QH183), Natural Science Foundation of China (Nos. 81302863, 31390433, and 91542000), and the Ministry of Science and Technology of China (973 Program, No. 2013CB944902).

References

  1. 1.
    Godfrey DI, Kennedy J, Suda T, Zlotnik A. A developmental pathway involving four phenotypically and functionally distinct subsets of CD3–CD4–CD8–triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J Immunol 1993; 150(10): 4244–4252PubMedGoogle Scholar
  2. 2.
    Germain RN. T-cell development and the CD4-CD8 lineage decision. Nat Rev Immunol 2002; 2(5): 309–322CrossRefPubMedGoogle Scholar
  3. 3.
    Ciofani M, Knowles GC, Wiest DL, von Boehmer H, Zúñiga-Pflücker JC. Stage-specific and differential notch dependency at the alphabeta and γδ T lineage bifurcation. Immunity 2006; 25(1): 105–116CrossRefPubMedGoogle Scholar
  4. 4.
    Hoh A, Dewerth A, Vogt F, Wenz J, Baeuerle PA, Warmann SW, Fuchs J, Armeanu-Ebinger S. The activity of γδ T cells against paediatric liver tumour cells and spheroids in cell culture. Liver Int 2013; 33(1):127–136CrossRefPubMedGoogle Scholar
  5. 5.
    Haas JD, González FH, Schmitz S, Chennupati V, Föhse L, Kremmer E, Förster R, Prinz I. CCR6 and NK1.1 distinguish between IL-17A and IFN-γ-producing γδ effector T cells. Eur J Immunol 2009; 39(12): 3488–3497CrossRefPubMedGoogle Scholar
  6. 6.
    Muñoz-Ruiz M, Sumaria N, Pennington DJ, Silva-Santos B. Thymic determinants of γδ T cell differentiation. Trends Immunol 2017; 38(5): 336–344CrossRefPubMedGoogle Scholar
  7. 7.
    Groh V, Steinle A, Bauer S, Spies T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 1998; 279(5357): 1737–1740CrossRefPubMedGoogle Scholar
  8. 8.
    Fay NS, Larson EC, Jameson JM. Chronic inflammation and γδ T cells. Front Immunol 2016; 7: 210CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Vantourout P, Hayday A. Six-of-the-best: unique contributions of γδ T cells to immunology. Nat Rev Immunol 2013; 13(2): 88–100CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Rajoriya N, Fergusson JR, Leithead JA, Klenerman P. γδ Tlymphocytes in hepatitis C and chronic liver disease. Front Immunol 2014; 5: 400CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wang X, Sun R, Wei H, Tian Z. High-mobility group box 1 (HMGB1)-Toll-like receptor (TLR)4-interleukin (IL)-23-IL-17A axis in drug-induced damage-associated lethal hepatitis: interaction of γδ T cells with macrophages. Hepatology 2013; 57(1): 373–384CrossRefPubMedGoogle Scholar
  12. 12.
    Protzer U, Maini MK, Knolle PA. Living in the liver: hepatic infections. Nat Rev Immunol 2012; 12(3): 201–213CrossRefPubMedGoogle Scholar
  13. 13.
    Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol 2014; 14(3): 181–194CrossRefPubMedGoogle Scholar
  14. 14.
    Robinson MW, Harmon C, O’Farrelly C. Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol 2016; 13 (3): 267–276CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Shuai Z, Leung MW, He X, Zhang W, Yang G, Leung PS, Eric Gershwin M. Adaptive immunity in the liver. Cell Mol Immunol 2016; 13(3): 354–368CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Horst AK, Neumann K, Diehl L, Tiegs G. Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells. Cell Mol Immunol 2016; 13(3): 277–292CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Crispe IN. Immune tolerance in liver disease. Hepatology 2014; 60 (6): 2109–2117CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gao B, Jeong WI, Tian Z. Liver: an organ with predominant innate immunity. Hepatology 2008; 47(2): 729–736CrossRefPubMedGoogle Scholar
  19. 19.
    Bandyopadhyay K, Marrero I, Kumar V. NKT cell subsets as key participants in liver physiology and pathology. Cell Mol Immunol 2016; 13(3): 337–346CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Peng H, Wisse E, Tian Z. Liver natural killer cells: subsets and roles in liver immunity. Cell Mol Immunol 2016; 13(3): 328–336CrossRefPubMedGoogle Scholar
  21. 21.
    Ju C, Tacke F. Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies. Cell Mol Immunol 2016; 13(3): 316–327CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhou Z, Xu MJ, Gao B. Hepatocytes: a key cell type for innate immunity. Cell Mol Immunol 2016; 13(3): 301–315CrossRefPubMedGoogle Scholar
  23. 23.
    Bonneville M, O’Brien RL, Born WK. γδ T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 2010; 10(7): 467–478CrossRefPubMedGoogle Scholar
  24. 24.
    Rao R, Graffeo CS, Gulati R, Jamal M, Narayan S, Zambirinis CP, Barilla R, Deutsch M, Greco SH, Ochi A, Tomkötter L, Blobstein R, Avanzi A, Tippens DM, Gelbstein Y, Van Heerden E, Miller G. Interleukin 17-producing γδ. T cells promote hepatic regeneration in mice. Gastroenterology 2014; 147(2):473–84.e2CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Li F, Hao X, Chen Y, Bai L, Gao X, Lian Z, Wei H, Sun R, Tian Z. The microbiota maintain homeostasis of liver-resident γδT-17 cells in a lipid antigen/CD1d-dependent manner. Nat Commun 2017; 7: 13839CrossRefPubMedGoogle Scholar
  26. 26.
    Liaw YF, Chu CM. Hepatitis B virus infection. Lancet 2009; 373 (9663): 582–592CrossRefPubMedGoogle Scholar
  27. 27.
    Chyuan IT, Tsai HF, Tzeng HT, Sung CC, Wu CS, Chen PJ, Hsu PN. Tumor necrosis factor-α blockage therapy impairs hepatitis B viral clearance and enhances T-cell exhaustion in a mouse model. Cell Mol Immunol 2015; 12(3): 317–325CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Chen M, Zhang D, Zhen W, Shi Q, Liu Y, Ling N, Peng M, Tang K, Hu P, Hu H, Ren H. Characteristics of circulating T cell receptor γδ T cells from individuals chronically infected with hepatitis B virus (HBV): an association between V(δ)2 subtype and chronic HBV infection. J Infect Dis 2008; 198(11): 1643–1650CrossRefPubMedGoogle Scholar
  29. 29.
    Chen M, Hu P, Ling N, Peng H, Lei Y, Hu H, Zhang D, Ren H. Enhanced functions of peripheral γδ T cells in chronic hepatitis B infection during interferon α treatment in vivo and in vitro. PLoS One 2015; 10(3): e0120086CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chen M, Hu P, Peng H, Zeng W, Shi X, Lei Y, Hu H, Zhang D, Ren H. Enhanced peripheral γδ T cells cytotoxicity potential in patients with HBV-associated acute-on-chronic liver failure might contribute to the disease progression. J Clin Immunol 2012; 32(4): 877–885CrossRefPubMedGoogle Scholar
  31. 31.
    Kong X, Sun R, Chen Y, Wei H, Tian Z. γδ T cells drive myeloidderived suppressor cell-mediated CD8+ T cell exhaustion in hepatitis B virus-induced immunotolerance. J Immunol 2014; 193 (4): 1645–1653CrossRefPubMedGoogle Scholar
  32. 32.
    Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol 2005; 5(3): 215–229CrossRefPubMedGoogle Scholar
  33. 33.
    Yin W, Tong S, Zhang Q, Shao J, Liu Q, Peng H, Hu H, Peng M, Hu P, Ren H, Tian Z, Zhang D. Functional dichotomy of Vd2 γδ T cells in chronic hepatitis C virus infections: role in cytotoxicity but not for IFN-g production. Sci Rep 2016; 6(1): 26296CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tseng CT, Miskovsky E, Houghton M, Klimpel GR. Characterization of liver T-cell receptor γδ T cells obtained from individuals chronically infected with hepatitis C virus (HCV): evidence for these T cells playing a role in the liver pathology associated with HCV infections. Hepatology 2001; 33(5): 1312–1320CrossRefPubMedGoogle Scholar
  35. 35.
    Agrati C, Alonzi T, De Santis R, Castilletti C, Abbate I, Capobianchi MR, D’Offizi G, Siepi F, Fimia GM, Tripodi M, Poccia F. Activation of Vγ9Vδ2T cells by non-peptidic antigens induces the inhibition of subgenomic HCV replication. Int Immunol 2006; 18(1): 11–18CrossRefPubMedGoogle Scholar
  36. 36.
    Sardinha LR, Elias RM, Mosca T, Bastos KR, Marinho CR, D’Império Lima MR, Alvarez JM. Contribution of NK, NK T, γδ T, and αβ T cells to the γ interferon response required for liver protection against Trypanosoma cruzi. Infect Immun 2006; 74(4): 2031–2042CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Tramonti D, Rhodes K, Martin N, Dalton JE, Andrew E, Carding SR. γδ T cell-mediated regulation of chemokine producing macrophages during Listeria monocytogenes infection-induced inflammation. J Pathol 2008; 216(2): 262–270CrossRefPubMedGoogle Scholar
  38. 38.
    Chen D, Luo X, Xie H, Gao Z, Fang H, Huang J. Characteristics of IL-17 induction by Schistosoma japonicum infection in C57BL/6 mouse liver. Immunology 2013; 139(4): 523–532CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Rinella ME. Nonalcoholic fatty liver disease: a systematic review. JAMA 2015; 313(22): 2263–2273CrossRefPubMedGoogle Scholar
  40. 40.
    Harley IT, Stankiewicz TE, Giles DA, Softic S, Flick LM, Cappelletti M, Sheridan R, Xanthakos SA, Steinbrecher KA, Sartor RB, Kohli R, Karp CL, Divanovic S. IL-17 signaling accelerates the progression of nonalcoholic fatty liver disease in mice. Hepatology 2014; 59(5): 1830–1839CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Xu R, Tao A, Zhang S, Zhang M. Neutralization of interleukin-17 attenuates high fat diet-induced non-alcoholic fatty liver disease in mice. Acta Biochim Biophys Sin (Shanghai) 2013; 45(9): 726–733CrossRefGoogle Scholar
  42. 42.
    Aizawa Y, Hokari A. Autoimmune hepatitis: current challenges and future prospects. Clin Exp Gastroenterol 2017; 10: 9–18CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Carey EJ, Ali AH, Lindor KD. Primary biliary cirrhosis. Lancet 2015; 386(10003): 1565–1575CrossRefPubMedGoogle Scholar
  44. 44.
    Singh S, Talwalkar JA. Primary sclerosing cholangitis: diagnosis, prognosis, and management. Clin Gastroenterol Hepatol 2013;11 (8):898–907CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Martins EB, Graham AK, Chapman RW, Fleming KA. Elevation of γδ T lymphocytes in peripheral blood and livers of patients with primary sclerosing cholangitis and other autoimmune liver diseases. Hepatology 1996; 23(5): 988–993PubMedGoogle Scholar
  46. 46.
    Hua F, Wang L, Rong X, Hu Y, Zhang JM, He W, Zhang FC. Elevation of Vd1T cells in peripheral blood and livers of patients with primary biliary cholangitis. Clin Exp Immunol 2016; 186(3): 347–355CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Wen L, Peakman M, Mieli-Vergani G, Vergani D. Elevation of activated γδ T cell receptor bearing T lymphocytes in patients with autoimmune chronic liver disease. Clin Exp Immunol 1992; 89(1): 78–82CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Ferri S, Longhi MS, De Molo C, Lalanne C, Muratori P, Granito A, Hussain MJ, Ma Y, Lenzi M, Mieli-Vergani G, Bianchi FB, Vergani D, Muratori L. A multifaceted imbalance of T cells with regulatory function characterizes type 1 autoimmune hepatitis. Hepatology 2010; 52(3): 999–1007CrossRefPubMedGoogle Scholar
  49. 49.
    Nishio K, Miyagi T, Tatsumi T, Mukai K, Yokoyama Y, Yoshioka T, Sakamori R, Hikita H, Kodama T, Shimizu S, Shigekawa M, Nawa T, Yoshihara H, Hiramatsu N, Yamanaka H, Seino K, Takehara T. Invariant natural killer T cell deficiency leads to the development of spontaneous liver inflammation dependent on γδ T cells in mice. J Gastroenterol 2015; 50(11): 1124–1133CrossRefPubMedGoogle Scholar
  50. 50.
    Zhang H, Bernuzzi F, Lleo A, Ma X, Invernizzi P. Therapeutic potential of IL-17-mediated signaling pathway in autoimmune liver diseases. Mediators Inflamm 2015; 2015: 436450PubMedPubMedCentralGoogle Scholar
  51. 51.
    Ujiie H, Shevach EM. γδ T cells protect the liver and lungs of mice from autoimmunity induced by scurfy lymphocytes. J Immunol 2016; 196(4): 1517–1528CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Zhao N, Hao J, Ni Y, Luo W, Liang R, Cao G, Zhao Y, Wang P, Zhao L, Tian Z, Flavell R, Hong Z, Han J, Yao Z, Wu Z, Yin Z. Vg4 γδ T cell-derived IL-17A negatively regulates NKT cell function in Con A-induced fulminant hepatitis. J Immunol 2011; 187(10): 5007–5014CrossRefPubMedGoogle Scholar
  53. 53.
    Hammerich L, Bangen JM, Govaere O, Zimmermann HW, Gassler N, Huss S, Liedtke C, Prinz I, Lira SA, Luedde T, Roskams T, Trautwein C, Heymann F, Tacke F. Chemokine receptor CCR6-dependent accumulation of γδ T cells in injured liver restricts hepatic inflammation and fibrosis. Hepatology 2014; 59(2): 630–642CrossRefPubMedGoogle Scholar
  54. 54.
    Seo W, Eun HS, Kim SY, Yi HS, Lee YS, Park SH, Jang MJ, Jo E, Kim SC, Han YM, Park KG, Jeong WI. Exosome-mediated activation of toll-like receptor 3 in stellate cells stimulates interleukin-17 production by γδ T cells in liver fibrosis. Hepatology 2016; 64(2): 616–631CrossRefPubMedGoogle Scholar
  55. 55.
    Meng F, Wang K, Aoyama T, Grivennikov SI, Paik Y, Scholten D, Cong M, Iwaisako K, Liu X, Zhang M, Österreicher CH, Stickel F, Ley K, Brenner DA, Kisseleva T. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 2012; 143(3):765–776.e3CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Tan Z, Qian X, Jiang R, Liu Q, Wang Y, Chen C, Wang X, Ryffel B, Sun B. IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation. J Immunol 2013; 191 (4): 1835–1844CrossRefPubMedGoogle Scholar
  57. 57.
    Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J. Cancer statistics in China, 2015. CA Cancer J Clin 2016; 66(2): 115–132CrossRefPubMedGoogle Scholar
  58. 58.
    Yi Y, He HW, Wang JX, Cai XY, Li YW, Zhou J, Cheng YF, Jin JJ, Fan J, Qiu SJ. The functional impairment of HCC-infiltrating γδ T cells, partially mediated by regulatory T cells in a TGFβ-and IL-10-dependent manner. J Hepatol 2013; 58(5): 977–983CrossRefPubMedGoogle Scholar
  59. 59.
    Cai XY, Wang JX, Yi Y, He HW, Ni XC, Zhou J, Cheng YF, Jin JJ, Fan J, Qiu SJ. Low counts of γδ T cells in peritumoral liver tissue are related to more frequent recurrence in patients with hepatocellular carcinoma after curative resection. Asian Pac J Cancer Prev 2014; 15(2): 775–780CrossRefPubMedGoogle Scholar
  60. 60.
    Ma S, Cheng Q, Cai Y, Gong H, Wu Y, Yu X, Shi L, Wu D, Dong C, Liu H. IL-17A produced by γδ T cells promotes tumor growth in hepatocellular carcinoma. Cancer Res 2014; 74(7): 1969–1982CrossRefPubMedGoogle Scholar
  61. 61.
    Zhang BN, Watanabe S, Kohyama M, Saijo K, Kusakabe M, Ohno T. Tumor formation suppressed in γδ T knock-out mice. Cancer Lett 2000; 153(1-2): 63–66CrossRefPubMedGoogle Scholar
  62. 62.
    Silva-Santos B, Serre K, Norell H. γδ T cells in cancer. Nat Rev Immunol 2015; 15(11): 683–691CrossRefPubMedGoogle Scholar
  63. 63.
    Wu D, Wu P, Qiu F, Wei Q, Huang J. Human γδ T-cell subsets and their involvement in tumor immunity. Cell Mol Immunol 2017; 14 (3): 245–253CrossRefPubMedGoogle Scholar
  64. 64.
    Toutirais O, Cabillic F, Le Friec G, Salot S, Loyer P, Le Gallo M, Desille M, de La Pintière CT, Daniel P, Bouet F, Catros V. DNAX accessory molecule-1 (CD226) promotes human hepatocellular carcinoma cell lysis by Vg9Vd2T cells. Eur J Immunol 2009; 39(5): 1361–1368CrossRefPubMedGoogle Scholar
  65. 65.
    Sugai S, Yoshikawa T, Iwama T, Tsuchiya N, Ueda N, Fujinami N, Shimomura M, Zhang R, Kaneko S, Uemura Y, Nakatsura T. Hepatocellular carcinoma cell sensitivity to Vg9Vd2T lymphocytemediated killing is increased by zoledronate. Int J Oncol 2016; 48 (5): 1794–1804CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Forbes SJ, Newsome PN. Liver regeneration — mechanisms and models to clinical application. Nat Rev Gastroenterol Hepatol 2016; 13(8): 473–485CrossRefPubMedGoogle Scholar
  67. 67.
    Furuya S, Kono H, Hara M, Hirayama K, Tsuchiya M, Fujii H. Interleukin-17A plays a pivotal role after partial hepatectomy in mice. J Surg Res 2013; 184(2): 838–846CrossRefPubMedGoogle Scholar
  68. 68.
    Wu X, Sun R, Chen Y, Zheng X, Bai L, Lian Z, Wei H, Tian Z. Oral ampicillin inhibits liver regeneration by breaking hepatic innate immune tolerance normally maintained by gut commensal bacteria. Hepatology 2015; 62(1): 253–264CrossRefPubMedGoogle Scholar
  69. 69.
    Wu YL, Ding YP, Tanaka Y, Shen LW, Wei CH, Minato N, Zhang W. γδ T cells and their potential for immunotherapy. Int J Biol Sci 2014; 10(2): 119–135CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Legut M, Cole DK, Sewell AK. The promise of γδ T cells and the γδ T cell receptor for cancer immunotherapy. Cell Mol Immunol 2015; 12(6): 656–668CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of PharmacyAnhui Medical UniversityHefeiChina
  2. 2.Institute of Immunology and CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical CenterUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina

Personalised recommendations