Frontiers of Medicine

, Volume 12, Issue 5, pp 497–508 | Cite as

Genome editing for the treatment of tumorigenic viral infections and virus-related carcinomas

  • Lan Yu
  • Xun Tian
  • Chun Gao
  • Ping Wu
  • Liming Wang
  • Bei Feng
  • Xiaomin Li
  • Hui Wang
  • Ding MaEmail author
  • Zheng HuEmail author


Viral infections cause at least 10%–15% of all human carcinomas. Over the last century, the elucidation of viral oncogenic roles in many cancer types has provided fundamental knowledge on carcinogenetic mechanisms and established a basis for the early intervention of virus-related cancers. Meanwhile, rapidly evolving genome-editing techniques targeting viral DNA/RNA have emerged as novel therapeutic strategies for treating virus-related carcinogenesis and have begun showing promising results. This review discusses the recent advances of genome-editing tools for treating tumorigenic viruses and their corresponding cancers, the challenges that must be overcome before clinically applying such genome-editing technologies, and more importantly, the potential solutions to these challenges.


genome-editing tools tumorigenic virus delivery method off-target effect virus-related carcinoma 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by funds from the National Basic Research Program of China (973 Program, No. 2015CB553903 to Ding Ma and No. 2013CB911304 to Hui Wang), the National Sciencetechnology Supporting Plan Projects (No. 2015BAI13B05), Chinese National Key Plan of Precision Medicine Research (No. 2016YFC0902901), and the National Natural Science Foundation of China (Nos. 81402158, 81472783, 81230038, 81630060, 81372805, and 81761148025), Guangzhou Science and Technology Programme (No. 201605131139145); the Fundamental Research Funds for the Central Universities (No. 17ykzd15) and Three Big Constructions—Supercomputing Appication Cultivation Projects sponsored by National Supercomputer Center in Guangzhou.


  1. 1.
    Hollingworth R, Grand RJ. Modulation of DNA damage and repair pathways by human tumour viruses. Viruses 2015; 7(5): 2542–2591Google Scholar
  2. 2.
    Shlomai A, de Jong YP, Rice CM. Virus associated malignancies: the role of viral hepatitis in hepatocellular carcinoma. Semin Cancer Biol 2014; 26: 78–88Google Scholar
  3. 3.
    Shih C, Chou SF, Yang CC, Huang JY, Choijilsuren G, Jhou RS. Control and eradication strategies of hepatitis B virus. Trends Microbiol 2016; 24(9): 739–749Google Scholar
  4. 4.
    Jonson AL, Rogers LM, Ramakrishnan S, Downs LS Jr. Gene silencing with siRNA targeting E6/E7 as a therapeutic intervention in a mouse model of cervical cancer. Gynecol Oncol 2008; 111(2): 356–364Google Scholar
  5. 5.
    Zanier K, Charbonnier S, Baltzinger M, Nominé Y, Altschuh D, Travé G. Kinetic analysis of the interactions of human papillomavirus E6 oncoproteins with the ubiquitin ligase E6AP using surface plasmon resonance. J Mol Biol 2005; 349(2): 401–412Google Scholar
  6. 6.
    Chung CH, Gillison ML. Human papillomavirus in head and neck cancer: its role in pathogenesis and clinical implications. Clin Cancer Res 2009; 15:6758–6762Google Scholar
  7. 7.
    Pett M, Coleman N. Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis? J Pathol 2007; 212 (4): 356–367Google Scholar
  8. 8.
    Drake MJ, Bates P. Application of gene-editing technologies to HIV-1. Curr Opin HIV AIDS 2015; 10(2): 123–127Google Scholar
  9. 9.
    Zimmerman KA, Fischer KP, Joyce MA, Tyrrell DL. Zinc finger proteins designed to specifically target duck hepatitis B virus covalently closed circular DNA inhibit viral transcription in tissue culture. J Virol 2008; 82(16): 8013–8021Google Scholar
  10. 10.
    Zhen S, Hua L, Liu YH, Gao LC, Fu J, Wan DY, Dong LH, Song HF, Gao X. Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene Ther 2015; 22(5): 404–412Google Scholar
  11. 11.
    Zhen S, Hua L, Takahashi Y, Narita S, Liu YH, Li Y. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochem Biophys Res Commun 2014; 450(4): 1422–1426Google Scholar
  12. 12.
    Hu Z, Ding W, Zhu D, Yu L, Jiang X, Wang X, Zhang C, Wang L, Ji T, Liu D, He D, Xia X, Zhu T, Wei J, Wu P, Wang C, Xi L, Gao Q, Chen G, Liu R, Li K, Li S, Wang S, Zhou J, Ma D, Wang H. TALEN-mediated targeting of HPV oncogenes ameliorates HPVrelated cervical malignancy. J Clin Invest 2015; 125(1): 425–436Google Scholar
  13. 13.
    Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 1996; 93(3): 1156–1160Google Scholar
  14. 14.
    Kim YG, Smith J, Durgesha M, Chandrasegaran S. Chimeric restriction enzyme: Gal4 fusion to FokI cleavage domain. Biol Chem 1998; 379(4-5): 489–496Google Scholar
  15. 15.
    Kim YG, Chandrasegaran S. Chimeric restriction endonuclease. Proc Natl Acad Sci USA 1994; 91(3): 883–887Google Scholar
  16. 16.
    Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 2012; 335(6069): 716–719Google Scholar
  17. 17.
    Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 2011; 39(12): e82Google Scholar
  18. 18.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339 (6121): 819–823Google Scholar
  19. 19.
    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science 2013; 339(6121): 823–826Google Scholar
  20. 20.
    Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014; 157(6): 1262–1278Google Scholar
  21. 21.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096): 816–821Google Scholar
  22. 22.
    Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNAprogrammed genome editing in human cells. eLife 2013; 2: e00471Google Scholar
  23. 23.
    Decrausaz L, Gonçalves AR, Domingos-Pereira S, Pythoud C, Stehle JC, Schiller J, Jichlinski P, Nardelli-Haefliger D. A novel mucosal orthotopic murine model of human papillomavirusassociated genital cancers. Int J Cancer 2011; 128(9): 2105–2113Google Scholar
  24. 24.
    Gravitt PE. The known unknowns of HPV natural history. J Clin Invest 2011; 121(12): 4593–4599Google Scholar
  25. 25.
    McBride AA, Oliveira JG, McPhillips MG. Partitioning viral genomes in mitosis: same idea, different targets. Cell Cycle 2006; 5 (14): 1499–1502Google Scholar
  26. 26.
    Horner SM, DiMaio D. The DNA binding domain of a papillomavirus E2 protein programs a chimeric nuclease to cleave integrated human papillomavirus DNA in HeLa cervical carcinoma cells. J Virol 2007; 81(12): 6254–6264Google Scholar
  27. 27.
    Ding W, Hu Z, Zhu D, Jiang X, Yu L, Wang X, Zhang C, Wang L, Ji T, Li K, He D, Xia X, Liu D, Zhou J, Ma D,Wang H. Zinc finger nucleases targeting the human papillomavirus E7 oncogene induce E7 disruption and a transformed phenotype in HPV16/18-positive cervical cancer cells. Clin Cancer Res 2014; 20:6495–6503 PMID: 25336692Google Scholar
  28. 28.
    Hu Z, Yu L, Zhu D, Ding W, Wang X, Zhang C, Wang L, Jiang X, Shen H, He D, Li K, Xi L, Ma D, Wang H. Disruption of HPV16–E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells. Biomed Res Int 2014; 2014:612823Google Scholar
  29. 29.
    Kennedy EM, Kornepati AV, Goldstein M, Bogerd HP, Poling BC, Whisnant AW, Kastan MB, Cullen BR. Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J Virol 2014; 88(20): 11965–11972Google Scholar
  30. 30.
    Muñoz N, Kjaer SK, Sigurdsson K, Iversen OE, Hernandez-Avila M, Wheeler CM, Perez G, Brown DR, Koutsky LA, Tay EH, Garcia PJ, Ault KA, Garland SM, Leodolter S, Olsson SE, Tang GW, Ferris DG, Paavonen J, Steben M, Bosch FX, Dillner J, Huh WK, Joura EA, Kurman RJ, Majewski S, Myers ER, Villa LL, Taddeo FJ, Roberts C, Tadesse A, Bryan JT, Lupinacci LC, Giacoletti KE, Sings HL, James MK, Hesley TM, Barr E, Haupt RM. Impact of human papillomavirus (HPV)-6/11/16/18 vaccine on all HPV-associated genital diseases in young women. J Natl Cancer Inst 2010; 102(5): 325–339Google Scholar
  31. 31.
    Lacey CJ, Woodhall SC, Wikstrom A, Ross J. 2012 European guideline for the management of anogenital warts. J Eur Acad Dermatol Venereol 2013; 27(3): e263–e270Google Scholar
  32. 32.
    Liu YC, Cai ZM, Zhang XJ. Reprogrammed CRISPR-Cas9 targeting the conserved regions of HPV6/11 E7 genes inhibits proliferation and induces apoptosis in E7-transformed keratinocytes. Asian J Androl 2016; 18(3): 475–479Google Scholar
  33. 33.
    Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 2006; 45 (4): 529–538Google Scholar
  34. 34.
    Chan SL, Wong VW, Qin S, Chan HL. Infection and cancer: the case of hepatitis B. J Clin Oncol 2016; 34(1): 83–90Google Scholar
  35. 35.
    Lin CL, Kao JH. Risk stratification for hepatitis B virus related hepatocellular carcinoma. J Gastroenterol Hepatol 2013; 28(1): 10–17Google Scholar
  36. 36.
    Chen J, Zhang W, Lin J, Wang F, Wu M, Chen C, Zheng Y, Peng X, Li J, Yuan Z. An efficient antiviral strategy for targeting hepatitis B virus genome using transcription activator-like effector nucleases. Mol Ther 2014; 22:303–311Google Scholar
  37. 37.
    Caruntu FA, Molagic V. cccDNA persistence during natural evolution of chronic VHB infection. Rom J Gastroenterol 2005; 14 (4): 373–377Google Scholar
  38. 38.
    Seeger C, Sohn JA. Targeting hepatitis B virus with CRISPR/Cas9. Mol Ther Nucleic Acids 2014; 3: e216Google Scholar
  39. 39.
    Wu TT, Coates L, Aldrich CE, Summers J, Mason WS. In hepatocytes infected with duck hepatitis B virus, the template for viral RNA synthesis is amplified by an intracellular pathway. Virology 1990; 175(1): 255–261Google Scholar
  40. 40.
    Lin G, Zhang K, Li J. Application of CRISPR/Cas9 technology to HBV. Int J Mol Sci 2015; 16(11): 26077–26086Google Scholar
  41. 41.
    Tiollais P, Pourcel C, Dejean A. The hepatitis B virus. Nature 1985; 317(6037): 489–495Google Scholar
  42. 42.
    Levrero M, Pollicino T, Petersen J, Belloni L, Raimondo G, Dandri M. Control of cccDNA function in hepatitis B virus infection. J Hepatol 2009; 51(3): 581–592Google Scholar
  43. 43.
    Li G, Jiang G, Lu J, Chen S, Cui L, Jiao J, Wang Y. Inhibition of hepatitis B virus cccDNA by siRNA in transgenic mice. Cell Biochem Biophys 2014; 69(3): 649–654Google Scholar
  44. 44.
    Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/ Cas-based methods for genome engineering. Trends Biotechnol 2013; 31(7): 397–405Google Scholar
  45. 45.
    Kennedy EM, Bassit LC, Mueller H, Kornepati AV, Bogerd HP, Nie T, Chatterjee P, Javanbakht H, Schinazi RF, Cullen BR. Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease. Virology 2015; 476: 196–205Google Scholar
  46. 46.
    Bloom K, Ely A, Mussolino C, Cathomen T, Arbuthnot P. Inactivation of hepatitis B virus replication in cultured cells and in vivo with engineered transcription activator-like effector nucleases. Mol Ther 2013; 21:1889–1897Google Scholar
  47. 47.
    Cradick TJ, Keck K, Bradshaw S, Jamieson AC, McCaffrey AP. Zinc-finger nucleases as a novel therapeutic strategy for targeting hepatitis B virus DNAs. Mol Ther 2010; 18:947–954Google Scholar
  48. 48.
    Ramanan V, Shlomai A, Cox DB, Schwartz RE, Michailidis E, Bhatta A, Scott DA, Zhang F, Rice CM, Bhatia SN. CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Sci Rep 2015; 5(1): 10833Google Scholar
  49. 49.
    Lin SR, Yang HC, Kuo YT, Liu CJ, Yang TY, Sung KC, Lin YY, Wang HY, Wang CC, Shen YC, Wu FY, Kao JH, Chen DS, Chen PJ. The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Mol Ther Nucleic Acids 2014; 3: e186Google Scholar
  50. 50.
    Karimova M, Beschorner N, Dammermann W, Chemnitz J, Indenbirken D, Bockmann JH, Grundhoff A, Lüth S, Buchholz F, Schulze zur Wiesch J, Hauber J. CRISPR/Cas9 nickasemediated disruption of hepatitis B virus open reading frame S and X. Sci Rep 2015; 5(1): 13734Google Scholar
  51. 51.
    Liu X, Hao R, Chen S, Guo D, Chen Y. Inhibition of hepatitis B virus by the CRISPR/Cas9 system via targeting the conserved regions of the viral genome. J Gen Virol 2015; 96(8): 2252–2261Google Scholar
  52. 52.
    Wang J, Xu ZW, Liu S, Zhang RY, Ding SL, Xie XM, Long L, Chen XM, Zhuang H, Lu FM. Dual gRNAs guided CRISPR/Cas9 system inhibits hepatitis B virus replication. World J Gastroenterol 2015; 21(32): 9554–9565Google Scholar
  53. 53.
    Bobbin ML, Burnett JC, Rossi JJ. RNA interference approaches for treatment of HIV-1 infection. Genome Med 2015; 7(1): 50Google Scholar
  54. 54.
    Obel N, Thomsen HF, Kronborg G, Larsen CS, Hildebrandt PR, Sørensen HT, Gerstoft J. Ischemic heart disease in HIV-infected and HIV-uninfected individuals: a population-based cohort study. Clin Infect Dis 2007; 44(12): 1625–1631Google Scholar
  55. 55.
    Brown TT, Qaqish RB. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS 2006; 20(17): 2165–2174Google Scholar
  56. 56.
    Odden MC, Scherzer R, Bacchetti P, Szczech LA, Sidney S, Grunfeld C, Shlipak MG. Cystatin C level as a marker of kidney function in human immunodeficiency virus infection: the FRAM study. Arch Intern Med 2007; 167(20): 2213–2219Google Scholar
  57. 57.
    Qin XF, An DS, Chen IS, Baltimore D. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci USA 2003; 100(1): 183–188Google Scholar
  58. 58.
    Martínez MA, Gutiérrez A, Armand-Ugón M, Blanco J, Parera M, Gómez J, Clotet B, Esté JA. Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. AIDS 2002; 16(18): 2385–2390Google Scholar
  59. 59.
    Hütter G, Nowak D, Mossner M, Ganepola S, Müssig A, Allers K, Schneider T, Hofmann J, Kücherer C, Blau O, Blau IW, Hofmann WK, Thiel E. Long-term control of HIV by CCR5 D32/D32 stemcell transplantation. N Engl J Med 2009; 360(7): 692–698Google Scholar
  60. 60.
    Hütter G, Ganepola S. Eradication of HIV by transplantation of CCR5-deficient hematopoietic stem cells. Sci World J 2011; 11: 1068–1076Google Scholar
  61. 61.
    Allers K, Hütter G, Hofmann J, Loddenkemper C, Rieger K, Thiel E, Schneider T. Evidence for the cure of HIV infection by CCR5D32/D32 stem cell transplantation. Blood 2011; 117(10): 2791–2799Google Scholar
  62. 62.
    Westby M, Lewis M, Whitcomb J, Youle M, Pozniak AL, James IT, Jenkins TM, Perros M, van der Ryst E. Emergence of CXCR4-using human immunodeficiency virus type 1 (HIV-1) variants in a minority of HIV-1-infected patients following treatment with the CCR5 antagonist maraviroc is from a pretreatment CXCR4-using virus reservoir. J Virol 2006; 80(10): 4909–4920Google Scholar
  63. 63.
    Scarlatti G, Tresoldi E, Björndal A, Fredriksson R, Colognesi C, Deng HK, Malnati MS, Plebani A, Siccardi AG, Littman DR, Fenyö EM, Lusso P. In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression. Nat Med 1997; 3(11): 1259–1265Google Scholar
  64. 64.
    Connor RI, Sheridan KE, Ceradini D, Choe S, Landau NR. Change in coreceptor use correlates with disease progression in HIV-1-infected individuals. J Exp Med 1997; 185(4): 621–628Google Scholar
  65. 65.
    Kordelas L, Verheyen J, Beelen DW, Horn PA, Heinold A, Kaiser R, Trenschel R, Schadendorf D, Dittmer U, Esser S; Essen HIV AlloSCT Group. Shift of HIV tropism in stem-cell transplantation with CCR5 D32 mutation. N Engl J Med 2014; 371(9): 880–882Google Scholar
  66. 66.
    Holt N, Wang J, Kim K, Friedman G, Wang X, Taupin V, Crooks GM, Kohn DB, Gregory PD, Holmes MC, Cannon PM. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 2010; 28(8): 839–847Google Scholar
  67. 67.
    Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, Wang N, Lee G, Bartsevich VV, Lee YL, Guschin DY, Rupniewski I, Waite AJ, Carpenito C, Carroll RG, Orange JS, Urnov FD, Rebar EJ, Ando D, Gregory PD, Riley JL, Holmes MC, June CH. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 2008; 26(7): 808–816Google Scholar
  68. 68.
    Wilen CB, Wang J, Tilton JC, Miller JC, Kim KA, Rebar EJ, Sherrill-Mix SA, Patro SC, Secreto AJ, Jordan AP, Lee G, Kahn J, Aye PP, Bunnell BA, Lackner AA, Hoxie JA, Danet-Desnoyers GA, Bushman FD, Riley JL, Gregory PD, June CH, Holmes MC, Doms RW. Engineering HIV-resistant human CD4+ T cells with CXCR4-specific zinc-finger nucleases. PLoS Pathog 2011; 7(4): e1002020Google Scholar
  69. 69.
    Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, Holmes MC, Gregory PD, Ando DG, Kalos M, Collman RG, Binder-Scholl G, Plesa G, Hwang WT, Levine BL, June CH. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014; 370(10): 901–910Google Scholar
  70. 70.
    Mussolino C, Morbitzer R, Lütge F, Dannemann N, Lahaye T, Cathomen T. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 2011; 39(21): 9283–9293Google Scholar
  71. 71.
    Mock U, Machowicz R, Hauber I, Horn S, Abramowski P, Berdien B, Hauber J, Fehse B. mRNA transfection of a novel TAL effector nuclease (TALEN) facilitates efficient knockout of HIV coreceptor CCR5. Nucleic Acids Res 2015; 43(11): 5560–5571Google Scholar
  72. 72.
    Liao HK, Gu Y, Diaz A, Marlett J, Takahashi Y, Li M, Suzuki K, Xu R, Hishida T, Chang CJ, Esteban CR, Young J, Izpisua Belmonte JC. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun 2015; 6: 6413Google Scholar
  73. 73.
    De Silva Feelixge HS, Stone D, Pietz HL, Roychoudhury P, Greninger AL, Schiffer JT, Aubert M, Jerome KR. Detection of treatment-resistant infectious HIV after genome-directed antiviral endonuclease therapy. Antiviral Res 2016; 126: 90–98Google Scholar
  74. 74.
    Yuan J, Wang J, Crain K, Fearns C, Kim KA, Hua KL, Gregory PD, Holmes MC, Torbett BE. Zinc-finger nuclease editing of human cxcr4 promotes HIV-1 CD4+ T cell resistance and enrichment. Mol Ther 2012; 20:849–859Google Scholar
  75. 75.
    Philpott S, Weiser B, Anastos K, Kitchen CM, Robison E, Meyer WA 3rd, Sacks HS, Mathur-Wagh U, Brunner C, Burger H. Preferential suppression of CXCR4-specific strains of HIV-1 by antiviral therapy. J Clin Invest 2001; 107(4): 431–438Google Scholar
  76. 76.
    Fadel HJ, Morrison JH, Saenz DT, Fuchs JR, Kvaratskhelia M, Ekker SC, Poeschla EM. TALEN knockout of the PSIP1 gene in human cells: analyses of HIV-1 replication and allosteric integrase inhibitor mechanism. J Virol 2014; 88(17): 9704–9717Google Scholar
  77. 77.
    Ebina H, Misawa N, Kanemura Y, Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 2013; 3(1): 2510Google Scholar
  78. 78.
    Qu X, Wang P, Ding D, Li L, Wang H, Ma L, Zhou X, Liu S, Lin S, Wang X, Zhang G, Liu S, Liu L, Wang J, Zhang F, Lu D, Zhu H. Zinc-finger-nucleases mediate specific and efficient excision of HIV-1 proviral DNA from infected and latently infected human T cells. Nucleic Acids Res 2013; 41(16): 7771–7782Google Scholar
  79. 79.
    Rodriguez MA, Shen C, Ratner D, Paranjape RS, Kulkarni SS, Chatterjee R, Gupta P. Genetic and functional characterization of the LTR of HIV-1 subtypes A and C circulating in India. AIDS Res Hum Retroviruses 2007; 23(11): 1428–1433Google Scholar
  80. 80.
    Yuen KS, Chan CP, Wong NH, Ho CH, Ho TH, Lei T, Deng W, Tsao SW, Chen H, Kok KH, Jin DY. CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells. J Gen Virol 2015; 96(Pt 3): 626–636Google Scholar
  81. 81.
    Noh KW, Park J, Kang MS. Targeted disruption of EBNA1 in EBV-infected cells attenuated cell growth. BMB Rep 2016; 49(4): 226–231Google Scholar
  82. 82.
    Su S, Zou Z, Chen F, Ding N, Du J, Shao J, Li L, Fu Y, Hu B, Yang Y, Sha H, Meng F, Wei J, Huang X, Liu B. CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer. OncoImmunology 2016; 6(1): e1249558Google Scholar
  83. 83.
    Mani M, Smith J, Kandavelou K, Berg JM, Chandrasegaran S. Binding of two zinc finger nuclease monomers to two specific sites is required for effective double-strand DNA cleavage. Biochem Biophys Res Commun 2005; 334(4): 1191–1197Google Scholar
  84. 84.
    Smith J, Bibikova M, Whitby FG, Reddy AR, Chandrasegaran S, Carroll D. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res 2000; 28(17): 3361–3369Google Scholar
  85. 85.
    Vanamee ES, Santagata S, Aggarwal AK. FokI requires two specific DNA sites for cleavage. J Mol Biol 2001; 309(1): 69–78Google Scholar
  86. 86.
    Frock RL, Hu J, Meyers RM, Ho YJ, Kii E, Alt FW. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol 2015; 33(2): 179–186Google Scholar
  87. 87.
    Stone D, Niyonzima N, Jerome KR. Genome editing and the next generation of antiviral therapy. Hum Genet 2016; 135(9): 1071–1082Google Scholar
  88. 88.
    Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T, Anderson DG. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 2014; 32(6): 551–553Google Scholar
  89. 89.
    Ellis BL, Hirsch ML, Porter SN, Samulski RJ, Porteus MH. Zincfinger nuclease-mediated gene correction using single AAV vector transduction and enhancement by Food and Drug Administrationapproved drugs. Gene Ther 2013; 20(1): 35–42Google Scholar
  90. 90.
    Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O,Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015; 520(7546): 186–191Google Scholar
  91. 91.
    Ortinski PI, O’Donovan B, Dong X, Kantor B. Integrase-deficient lentiviral vector as an all-in-one platform for highly efficient CRISPR/Cas9-mediated gene editing. Mol Ther Methods Clin Dev 2017; 5: 153–164Google Scholar
  92. 92.
    Holkers M, Maggio I, Liu J, Janssen JM, Miselli F, Mussolino C, Recchia A, Cathomen T, Gonçalves MA. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res 2013; 41(5): e63Google Scholar
  93. 93.
    Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, Kim KA, Ando D, Urnov FD, Galli C, Gregory PD, Holmes MC, Naldini L. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 2007; 25(11): 1298–1306Google Scholar
  94. 94.
    Kim H, Kim JS. A guide to genome engineering with programmable nucleases. Nat Rev Genet 2014; 15(5): 321–334Google Scholar
  95. 95.
    Liu X, Wang Y, Guo W, Chang B, Liu J, Guo Z, Quan F, Zhang Y. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the β-casein locus in cloned cows. Nat Commun 2013; 4: 2565Google Scholar
  96. 96.
    Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 2013; 31 (9): 822–826Google Scholar
  97. 97.
    Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim JS. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 2014; 24(1): 132–141Google Scholar
  98. 98.
    Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 2014; 32(3): 279–284Google Scholar
  99. 99.
    Wyvekens N, Topkar VV, Khayter C, Joung JK, Tsai SQ. Dimeric CRISPR RNA-guided FokI-dCas9 nucleases directed by truncated gRNAs for highly specific genome editing. Hum Gene Ther 2015; 26(7): 425–431Google Scholar
  100. 100.
    Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 2014; 32(6): 569–576Google Scholar
  101. 101.
    Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 2014; 32(6): 577–582Google Scholar
  102. 102.
    Pattanayak V, Ramirez CL, Joung JK, Liu DR. Revealing offtarget cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods 2011; 8(9): 765–770Google Scholar
  103. 103.
    Guilinger JP, Pattanayak V, Reyon D, Tsai SQ, Sander JD, Joung JK, Liu DR. Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods 2014; 11(4): 429–435Google Scholar
  104. 104.
    Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 2016; 529 (7587): 490–495Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lan Yu
    • 1
    • 2
    • 4
  • Xun Tian
    • 1
    • 2
  • Chun Gao
    • 1
    • 2
  • Ping Wu
    • 1
    • 2
  • Liming Wang
    • 1
    • 2
  • Bei Feng
    • 1
    • 2
  • Xiaomin Li
    • 1
    • 2
  • Hui Wang
    • 1
    • 2
  • Ding Ma
    • 1
    • 2
    Email author
  • Zheng Hu
    • 2
    • 3
    Email author
  1. 1.Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  3. 3.Department of Gynecological OncologyFirst Affiliated Hospital of Sun Yat-sen UniversityGuangzhouChina
  4. 4.Department of Gynecology and ObstetricsFirst Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina

Personalised recommendations