Frontiers of Medicine

, Volume 13, Issue 3, pp 330–343 | Cite as

Overexpressed long noncoding RNA CRNDE with distinct alternatively spliced isoforms in multiple cancers

  • Xuefei Ma
  • Wei Zhang
  • Rong Zhang
  • Jingming Li
  • Shufen Li
  • Yunlin Ma
  • Wen JinEmail author
  • Kankan WangEmail author
Research Article


Alternative splicing is a tightly regulated process that contributes to cancer development. CRNDE is a long noncoding RNA with alternative splicing and is implicated in the pathogenesis of several cancers. However, whether deregulated expression of CRNDE is common and which isoforms are mainly involved in cancers remain unclear. In this study, we report that CRNDE is aberrantly expressed in the majority of solid and hematopoietic malignancies. The investigation of CRNDE expression in normal samples revealed that CRNDE was expressed in a tissue- and cell-specific manner. Further comparison of CRNDE expression in 2938 patient samples from 15 solid and hematopoietic tumors showed that CRNDE was significantly overexpressed in 11 malignancies, including 3 reported and 8 unreported, and also implicated that the overexpressed isoforms differed in various cancer types. Furthermore, anti-cancer drugs could efficiently repress CRNDE overexpression in cancer cell lines and primary samples, and even had different impacts on the expression of CRNDE isoforms. Finally, experimental profiles of 12 alternatively spliced isoforms demonstrated that the spliced variant CRNDE-g was the most highly expressed isoform in multiple cancer types. Collectively, our results emphasize the cancer-associated feature of CRNDE and its spliced isoforms, and may provide promising targets for cancer diagnosis and therapy.


long noncoding RNA CRNDE alternative splicing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported in part by National Natural Science Foundation of China (Nos. 81530003, 81300403, 81770153 and 91440114), The National Key Research and Development Program (No. 2016YFC0902800), Shanghai Leading Talent Projects (No. 2015008) and the Academic Leader Program of Shanghai Science and Technology Committee (No. 2015137).

Supplementary material

11684_2017_557_MOESM1_ESM.pdf (773 kb)
Supplementary material, approximately 772 KB.


  1. 1.
    Zhang Z, Pal S, Bi Y, Tchou J, Davuluri RV. Isoform level expression profiles provide better cancer signatures than gene level expression profiles. Genome Med 2013; 5(4): 33Google Scholar
  2. 2.
    Miura K, Fujibuchi W, Unno M. Splice isoforms as therapeutic targets for colorectal cancer. Carcinogenesis 2012; 33(12): 2311–2319Google Scholar
  3. 3.
    Gellert P, Ponomareva Y, Braun T, Uchida S. Noncoder: a web interface for exon array-based detection of long non-coding RNAs. Nucleic Acids Res 2013; 41(1): e20Google Scholar
  4. 4.
    Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 2009; 23(13): 1494–1504Google Scholar
  5. 5.
    Kornienko AE, Dotter CP, Guenzl PM, Gisslinger H, Gisslinger B, Cleary C, Kralovics R, Pauler FM, Barlow DP. Long non-coding RNAs display higher natural expression variation than proteincoding genes in healthy humans. Genome Biol 2016; 17(1): 14Google Scholar
  6. 6.
    Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY. Long noncoding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010; 464(7291): 1071–1076Google Scholar
  7. 7.
    Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol 2011; 21(6): 354–361Google Scholar
  8. 8.
    Liu Y, Zhang M, Liang L, Li J, Chen YX. Over-expression of lncRNA DANCR is associated with advanced tumor progression and poor prognosis in patients with colorectal cancer. Int J Clin Exp Pathol 2015; 8(9): 11480–11484Google Scholar
  9. 9.
    Ren YK, Xiao Y, Wan XB, Zhao YZ, Li J, Li Y, Han GS, Chen XB, Zou QY, Wang GC, Lu CM, Xu YC, Wang YC. Association of long non-coding RNA HOTTIP with progression and prognosis in colorectal cancer. Int J Clin Exp Pathol 2015; 8(9): 11458–11463Google Scholar
  10. 10.
    Díaz-Beyá M, Brunet S, Nomdedéu J, Pratcorona M, Cordeiro A, Gallardo D, Escoda L, Tormo M, Heras I, Ribera JM, Duarte R, de Llano MP, Bargay J, Sampol A, Nomdedeu M, Risueño RM, Hoyos M, Sierra J, Monzo M, Navarro A, Esteve J; Cooperative AML group CETLAM. The lincRNA HOTAIRM1, located in the HOXA genomic region, is expressed in acute myeloid leukemia, impacts prognosis in patients in the intermediate-risk cytogenetic category, and is associated with a distinctive microRNA signature. Oncotarget 2015; 6(31): 31613–31627Google Scholar
  11. 11.
    Joo JH, Ryu D, Peng Q, Sugrue SP. Role of Pnn in alternative splicing of a specific subset of lncRNAs of the corneal epithelium. Mol Vis 2014; 20: 1629–1642Google Scholar
  12. 12.
    Tilgner H, Knowles DG, Johnson R, Davis CA, Chakrabortty S, Djebali S, Curado J, Snyder M, Gingeras TR, Guigó R. Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res 2012; 22(9): 1616–1625Google Scholar
  13. 13.
    Massone S, Vassallo I, Castelnuovo M, Fiorino G, Gatta E, Robello M, Borghi R, Tabaton M, Russo C, Dieci G, Cancedda R, Pagano A. RNA polymerase III drives alternative splicing of the potassium channel-interacting protein contributing to brain complexity and neurodegeneration. J Cell Biol 2011; 193(5): 851–866Google Scholar
  14. 14.
    Graham LD, Pedersen SK, Brown GS, Ho T, Kassir Z, Moynihan AT, Vizgoft EK, Dunne R, Pimlott L, Young GP, Lapointe LC, Molloy PL. Colorectal Neoplasia Differentially Expressed (CRNDE), a novel gene with elevated expression in colorectal adenomas and adenocarcinomas. Genes Cancer 2011; 2(8): 829–840Google Scholar
  15. 15.
    Fu XL, Liu DJ, Yan TT, Yang JY, Yang MW, Li J, Huo YM, Liu W, Zhang JF, Hong J, Hua R, Chen HY, Sun YW. Analysis of long non-coding RNA expression profiles in pancreatic ductal adenocarcinoma. Sci Rep 2016; 6(1): 33535Google Scholar
  16. 16.
    Zhang X, Sun S, Pu JK, Tsang AC, Lee D, Man VO, Lui WM, Wong ST, Leung GK. Long non-coding RNA expression profiles predict clinical phenotypes in glioma. Neurobiol Dis 2012; 48(1): 1–8Google Scholar
  17. 17.
    Ellis BC, Molloy PL, Graham LD. CRNDE: a long non-coding RNA involved in cancer, neurobiology, and development. Front Genet 2012; 3: 270Google Scholar
  18. 18.
    Han P, Li JW, Zhang BM, Lv JC, Li YM, Gu XY, Yu ZW, Jia YH, Bai XF, Li L, Liu YL, Cui BB. The lncRNA CRNDE promotes colorectal cancer cell proliferation and chemoresistance via miR-181a-5p-mediated regulation of Wnt/ß-catenin signaling. Mol Cancer 2017; 16(1): 9Google Scholar
  19. 19.
    Shao K, Shi T, Yang Y, Wang X, Xu D, Zhou P. Highly expreßsed lncRNA CRNDE promotes cell proliferation through Wnt/β-catenin signaling in renal cell carcinoma. Tumour Biol 2016; 37(12): 15997–16004Google Scholar
  20. 20.
    Zheng J, Li XD, Wang P, Liu XB, Xue YX, Hu Y, Li Z, Li ZQ, Wang ZH, Liu YH. CRNDE affects the malignant biological characteristics of human glioma stem cells by negatively regulating miR-186. Oncotarget 2015; 6(28): 25339–25355Google Scholar
  21. 21.
    Liu T, Zhang X, Yang YM, Du LT, Wang CX. Increased expression of the long noncoding RNA CRNDE-h indicates a poor prognosis in colorectal cancer, and is positively correlated with IRX5 mRNA expression. Onco Targets Ther 2016; 9: 1437–1448Google Scholar
  22. 22.
    Liu T, Zhang X, Gao S, Jing F, Yang Y, Du L, Zheng G, Li P, Li C, Wang C. Exosomal long noncoding RNA CRNDE-h as a novel serum-based biomarker for diagnosis and prognosis of colorectal cancer. Oncotarget 2016; 7(51): 85551–85563Google Scholar
  23. 23.
    Berkofsky-Fessler W, Nguyen TQ, Delmar P, Molnos J, Kanwal C, DePinto W, Rosinski J, McLoughlin P, Ritland S, DeMario M, Tobon K, Reidhaar-Olson JF, Rueger R, Hilton H. Preclinical biomarkers for a cyclin-dependent kinase inhibitor translate to candidate pharmacodynamic biomarkers in phase I patients. Mol Cancer Ther 2009; 8(9): 2517–2525Google Scholar
  24. 24.
    Goujon C, Moncorgé O, Bauby H, Doyle T, Ward CC, Schaller T, Hué S, Barclay WS, Schulz R, Malim MH. Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature 2013; 502(7472): 559–562Google Scholar
  25. 25.
    Benito R, Lumbreras E, Abáigar M, Gutiérrez NC, Delgado M, Robledo C, García JL, Rodríguez-Vicente AE, Cañizo MC, Rivas JM. Imatinib therapy of chronic myeloid leukemia restores the expression levels of key genes for DNA damage and cell-cycle progression. Pharmacogenet Genomics 2012; 22(5): 381–388Google Scholar
  26. 26.
    Ellis BC, Graham LD, Molloy PL. CRNDE, a long non-coding RNA responsive to insulin/IGF signaling, regulates genes involved in central metabolism. Biochim Biophys Acta 2014; 1843(2): 372–386Google Scholar
  27. 27.
    Khamas A, Ishikawa T, Shimokawa K, Mogushi K, Iida S, Ishiguro M, Mizushima H, Tanaka H, Uetake H, Sugihara K. Screening for epigenetically masked genes in colorectal cancer Using 5-Aza-2′-deoxycytidine, microarray and gene expression profile. Cancer Genomics Proteomics 2012; 9(2): 67–75Google Scholar
  28. 28.
    Sabates-Bellver J, Van der Flier LG, de Palo M, Cattaneo E, Maake C, Rehrauer H, Laczko E, Kurowski MA, Bujnicki JM, Menigatti M, Luz J, Ranalli TV, Gomes V, Pastorelli A, Faggiani R, Anti M, Jiricny J, Clevers H, Marra G. Transcriptome profile of human colorectal adenomas. Mol Cancer Res 2007; 5(12): 1263–1275Google Scholar
  29. 29.
    Valcz G, Patai AV, Kalmár A, Péterfia B, Furi I, Wichmann B, Muzes G, Sipos F, Krenács T, Mihály E, Spisák S, Molnár B, Tulassay Z. Myofibroblast-derived SFRP1 as potential inhibitor of colorectal carcinoma field effect. PLoS One 2014; 9(11): e106143Google Scholar
  30. 30.
    Galamb O, Györffy B, Sipos F, Spisák S, Németh AM, Miheller P, Tulassay Z, Dinya E, Molnár B. Inflammation, adenoma and cancer: objective classification of colon biopsy specimens with gene expression signature. Dis Markers 2008; 25(1): 1–16Google Scholar
  31. 31.
    Sun L, Hui AM, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S, Passaniti A, Menon J, Walling J, Bailey R, Rosenblum M, Mikkelsen T, Fine HA. Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 2006; 9 (4): 287–300Google Scholar
  32. 32.
    Demeure MJ, Coan KE, Grant CS, Komorowski RA, Stephan E, Sinari S, Mount D, Bussey KJ. PTTG1 overexpression in adrenocortical cancer is associated with poor survival and represents a potential therapeutic target. Surgery 2013; 154(6): 1405–1416, discussion 1416Google Scholar
  33. 33.
    Giordano TJ, Kuick R, Else T, Gauger PG, Vinco M, Bauersfeld J, Sanders D, Thomas DG, Doherty G, Hammer G. Molecular classification and prognostication of adrenocortical tumors by transcriptome profiling. Clin Cancer Res 2009; 15(2): 668–676Google Scholar
  34. 34.
    Pei H, Li L, Fridley BL, Jenkins GD, Kalari KR, Lingle W, Petersen G, Lou Z, Wang L. FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt. Cancer Cell 2009; 16 (3): 259–266Google Scholar
  35. 35.
    Du W, Cao Z, Song T, Li Y, Liang Y. A feature selection method based on multiple kernel learning with expression profiles of different types. BioData Min 2017; 10(1): 4Google Scholar
  36. 36.
    Badea L, Herlea V, Dima SO, Dumitrascu T, Popescu I. Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia. Hepatogastroenterology 2008; 55(88): 2016–2027Google Scholar
  37. 37.
    Arredouani MS, Lu B, Bhasin M, Eljanne M, Yue W, Mosquera JM, Bubley GJ, Li V, Rubin MA, Libermann TA, Sanda MG. Identification of the transcription factor single-minded homologue 2 as a potential biomarker and immunotherapy target in prostate cancer. Clin Cancer Res 2009; 15(18): 5794–5802Google Scholar
  38. 38.
    Mortensen MM, Høyer S, Lynnerup AS, Ørntoft TF, Sørensen KD, Borre M, Dyrskjøt L. Expression profiling of prostate cancer tissue delineates genes associated with recurrence after prostatectomy. Sci Rep 2015; 5(1): 16018Google Scholar
  39. 39.
    Bowen NJ, Walker LD, Matyunina LV, Logani S, Totten KA, Benigno BB, McDonald JF. Gene expression profiling supports the hypothesis that human ovarian surface epithelia are multipotent and capable of serving as ovarian cancer initiating cells. BMC Med Genomics 2009; 2(1): 71Google Scholar
  40. 40.
    den Boon JA, Pyeon D, Wang SS, Horswill M, Schiffman M, Sherman M, Zuna RE, Wang Z, Hewitt SM, Pearson R, Schott M, Chung L, He Q, Lambert P, Walker J, Newton MA, Wentzensen N, Ahlquist P. Molecular transitions from papillomavirus infection to cervical precancer and cancer: role of stromal estrogen receptor signaling. Proc Natl Acad Sci U S A 2015; 112(25): E3255–E3264Google Scholar
  41. 41.
    Hu L, Ai J, Long H, Liu W, Wang X, Zuo Y, Li Y, Wu Q, Deng Y. Integrative microRNA and gene profiling data analysis reveals novel biomarkers and mechanisms for lung cancer. Oncotarget 2016; 7(8): 8441–8454Google Scholar
  42. 42.
    Jee BA, Lim H, Kwon SM, Jo Y, Park MC, Lee IJ, Woo HG. Molecular classification of basal cell carcinoma of skin by gene expression profiling. Mol Carcinog 2015; 54(12): 1605–1612Google Scholar
  43. 43.
    Choi YL, Tsukasaki K, O’Neill MC, Yamada Y, Onimaru Y, Matsumoto K, Ohashi J, Yamashita Y, Tsutsumi S, Kaneda R, Takada S, Aburatani H, Kamihira S, Nakamura T, Tomonaga M, Mano H. A genomic analysis of adult T-cell leukemia. Oncogene 2007; 26(8): 1245–1255Google Scholar
  44. 44.
    Payton JE, Grieselhuber NR, Chang LW, Murakami M, Geiss GK, Link DC, Nagarajan R, Watson MA, Ley TJ. High throughput digital quantification of mRNA abundance in primary human acute myeloid leukemia samples. J Clin Invest 2009; 119(6): 1714–1726Google Scholar
  45. 45.
    Kohlmann A, Kipps TJ, Rassenti LZ, Downing JR, Shurtleff SA, Mills KI, Gilkes AF, Hofmann WK, Basso G, Dell’orto MC, Foà R, Chiaretti S, De Vos J, Rauhut S, Papenhausen PR, Hernández JM, Lumbreras E, Yeoh AE, Koay ES, Li R, Liu WM, Williams PM, Wieczorek L, Haferlach T. An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: the Microarray Innovations in Leukemia Study Prephase. Br J Haematol 2008; 142(5): 802–807Google Scholar
  46. 46.
    Haferlach T, Kohlmann A, Wieczorek L, Basso G, Kronnie GT, Béné MC, De Vos J, Hernández JM, Hofmann WK, Mills KI, Gilkes A, Chiaretti S, Shurtleff SA, Kipps TJ, Rassenti LZ, Yeoh AE, Papenhausen PR, Liu WM, Williams PM, Foà R. Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group. J Clin Oncol 2010; 28 (15): 2529–2537Google Scholar
  47. 47.
    Filarsky K, Garding A, Becker N, Wolf C, Zucknick M, Claus R, Weichenhan D, Plass C, Döhner H, Stilgenbauer S, Lichter P, Mertens D. Krüppel-like factor 4 (KLF4) inactivation in chronic lymphocytic leukemia correlates with promoter DNA-methylation and can be reversed by inhibition of NOTCH signaling. Haematologica 2016; 101(6): e249–e253Google Scholar
  48. 48.
    Chu XJ, DePinto W, Bartkovitz D, So SS, Vu BT, Packman K, Lukacs C, Ding Q, Jiang N, Wang K, Goelzer P, Yin X, Smith MA, Higgins BX, Chen Y, Xiang Q, Moliterni J, Kaplan G, Graves B, Lovey A, Fotouhi N. Discovery of [4-Amino-2-(1-methanesulfonylpiperidin-4-ylamino)pyrimidin-5-yl](2,3-difluoro-6-methoxyphenyl) methanone (R547), a potent and selective cyclindependent kinase inhibitor with significant in vivo antitumor activity. J Med Chem 2006; 49(22): 6549–6560Google Scholar
  49. 49.
    Myrthue A, Rademacher BL, Pittsenbarger J, Kutyba-Brooks B, Gantner M, Qian DZ, Beer TM. The iroquois homeobox gene 5 is regulated by 1,25-dihydroxyvitamin D3 in human prostate cancer and regulates apoptosis and the cell cycle in LNCaP prostate cancer cells. Clin Cancer Res 2008; 14(11): 3562–3570Google Scholar
  50. 50.
    Szafron LM, Balcerak A, Grzybowska EA, Pienkowska-Grela B, Podgorska A, Zub R, Olbryt M, Pamula-Pilat J, Lisowska KM, Grzybowska E, Rubel T, Dansonka-Mieszkowska A, Konopka B, Kulesza M, Lukasik M, Kupryjanczyk J. The putative oncogene, CRNDE, is a negative prognostic factor in ovarian cancer patients. Oncotarget 2015; 6(41): 43897–43910Google Scholar
  51. 51.
    Wang Y, Wang Y, Li J, Zhang Y, Yin H, Han B. CRNDE, a longnoncoding RNA, promotes glioma cell growth and invasion through mTOR signaling. Cancer Lett 2015; 367(2): 122–128Google Scholar
  52. 52.
    Zheng J, Liu X, Wang P, Xue Y, Ma J, Qu C, Liu Y. CRNDE promotes malignant progression of glioma by attenuating miR-384/ PIWIL4/STAT3 axis. Mol Ther 2016; 24(7): 1199–1215Google Scholar
  53. 53.
    Gao H, Song X, Kang T, Yan B, Feng L, Gao L, Ai L, Liu X, Yu J, Li H. Long noncoding RNA CRNDE functions as a competing endogenous RNA to promote metastasis and oxaliplatin resistance by sponging miR-136 in colorectal cancer. Onco Targets Ther 2017; 10: 205–216Google Scholar
  54. 54.
    Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, Regev A, Lander ES, Rinn JL. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 2009; 106(28): 11667–11672Google Scholar
  55. 55.
    Szafron LM, Balcerak A, Grzybowska EA, Pienkowska-Grela B, Felisiak-Golabek A, Podgorska A, Kulesza M, Nowak N, Pomorski P, Wysocki J, Rubel T, Dansonka-Mieszkowska A, Konopka B, Lukasik M, Kupryjanczyk J. The novel gene CRNDE encodes a nuclear peptide (CRNDEP) which is overexpressed in highly proliferating tissues. PLoS One 2015; 10(5): e0127475Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Medical Genomics and Shanghai Institute of HematologyRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
  2. 2.School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Department of HematologyXi’an Gaoxin HospitalXi’anChina

Personalised recommendations