Advertisement

Frontiers of Medicine

, Volume 10, Issue 3, pp 311–319 | Cite as

Roles of integrin β3 cytoplasmic tail in bidirectional signal transduction in a trans-dominant inhibition model

  • Jiansong Huang
  • Yulan Zhou
  • Xiaoyu Su
  • Yuanjing Lyu
  • Lanlan Tao
  • Xiaofeng Shi
  • Ping Liu
  • Zhangbiao Long
  • Zheng Ruan
  • Bing Xiao
  • Wenda Xi
  • Quansheng Zhou
  • Jianhua MaoEmail author
  • Xiaodong XiEmail author
Research Article

Abstract

We evaluated the roles of calpain cleavage-related mutations of the integrin β3 cytoplasmic tail in integrin αIIbβ3 bidirectional signaling using a trans-dominant inhibition model. Chimeric Tac-β3 proteins (i.e., Tac-β3, Tac-β3Δ741, Tac-β3Δ747, Tac-β3Δ754, Tac-β3Δ759, and Tac-β3ΔNITY) consisting of the extracellular and transmembrane domains of human IL-2 receptor (Tac) and the human integrin β3 cytoplasmic domain were stably expressed in the 123 CHO cells harboring human glycoprotein Ib-IX and wild-type integrin αIIbβ3. The different cells were assayed for stable adhesion and spreading on immobilized fibrinogen, and for binding soluble fibrinogen representing outside-in and inside-out signaling events, respectively. The chimeric protein Tac-β3 inhibited, and Tac-β3ΔNITY partially attenuated stable adhesion and spreading. Tac-β3, Tac-β3Δ759, Tac-β3ΔNITY, and Tac-β3Δ754, but not Tac-β3Δ747 or Tac-β3Δ741, impaired the soluble fibrinogen binding. Results indicated that the bidirectional signaling was significantly inhibited by Tac-β3 and Tac-β3ΔNITY, albeit to a much lesser extent. Moreover, only inside-out signaling was impaired in the 123/Tac-β3Δ759 and 123/Tac-β3Δ754 cells in contrast to an intact bidirectional signaling in the 123/Tac-β3Δ747 and 123/Tac-β3Δ741 cells. In conclusion, the calpain cleavage of integrin β3 resulted in the regulatory effects on signaling by interrupting its interaction with cytoplasmic proteins rather than altering its conformation, and may thus regulate platelet function.

Keywords

integrin β3 signal transduction trans-dominant inhibition model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002; 110(6): 673–687PubMedCrossRefGoogle Scholar
  2. 2.
    Moser M, Legate KR, Zent R, Fässler R. The tail of integrins, talin, and kindlins. Science 2009; 324(5929): 895–899PubMedCrossRefGoogle Scholar
  3. 3.
    Li Q, Tang Q, Zhang P, Wang Z, Zhao T, Zhou J, Li H, Ding Q, Li W, Hu F, Du Y, Yuan H, Chen S, Gao J, Zhan J, You J. Human epidermal growth factor receptor-2 antibodies enhance the specificity and anticancer activity of light-sensitive doxorubicin-labeled liposomes. Biomaterials 2015; 57: 1–11PubMedCrossRefGoogle Scholar
  4. 4.
    Bennett JS. Structure and function of the platelet integrin αIIbβ3. J Clin Invest 2005; 115(12): 3363–3369PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Bennett JS. Regulation of integrins in platelets. Biopolymers 2015; 104(4): 323–333PubMedCrossRefGoogle Scholar
  6. 6.
    Li R, Mitra N, Gratkowski H, Vilaire G, Litvinov R, Nagasami C, Weisel JW, Lear JD, DeGrado WF, Bennett JS. Activation of integrin αIIbβ3 by modulation of transmembrane helix associations. Science 2003; 300(5620): 795–798PubMedCrossRefGoogle Scholar
  7. 7.
    Ginsberg MH. Integrin activation. BMB Rep 2014; 47(12): 655–659PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Ma YQ, Qin J, Plow EF. Platelet integrin α(IIb)β(3): activation mechanisms. J Thromb Haemost 2007; 5(7): 1345–1352PubMedCrossRefGoogle Scholar
  9. 9.
    Ye F, Snider AK, Ginsberg MH. Talin and kindlin: the one-two punch in integrin activation. Front Med 2014; 8(1): 6–16PubMedCrossRefGoogle Scholar
  10. 10.
    Huang J, Shi X, Xi W, Liu P, Long Z, Xi X. Evaluation of targeting c-Src by the RGT-containing peptide as a novel antithrombotic strategy. J Hematol Oncol 2015; 8(1): 62PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Su X, Mi J, Yan J, Flevaris P, Lu Y, Liu H, Ruan Z, Wang X, Kieffer N, Chen S, Du X, Xi X. RGT, a synthetic peptide corresponding to the integrin β3 cytoplasmic C-terminal sequence, selectively inhibits outside-in signaling in human platelets by disrupting the interaction of integrin αIIbβ3 with Src kinase. Blood 2008; 112(3): 592–602PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Shen B, Zhao X, O’Brien KA, Stojanovic-Terpo A, Delaney MK, Kim K, Cho J, Lam SC, Du X. A directional switch of integrin signalling and a new anti-thrombotic strategy. Nature 2013; 503(7474): 131–135PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Gong H, Shen B, Flevaris P, Chow C, Lam SC, Voyno-Yasenetskaya TA, Kozasa T, Du X. G protein subunit Gα13 binds to integrin αIIbβ3 and mediates integrin “outside-in” signaling. Science 2010; 327(5963): 340–343PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Xiang B, Zhang G, Ye S, Zhang R, Huang C, Liu J, Tao M, Ruan C, Smyth SS, Whiteheart SW, Li Z. Characterization of a novel integrin binding protein, VPS33B, which is important for platelet activation and in vivo thrombosis and hemostasis. Circulation 2015; 132(24): 2334–2344PubMedCrossRefGoogle Scholar
  15. 15.
    Law DA, DeGuzman FR, Heiser P, Ministri-Madrid K, Killeen N, Phillips DR. Integrin cytoplasmic tyrosine motif is required for outside-in αIIbβ3 signalling and platelet function. Nature 1999; 401(6755): 808–811PubMedCrossRefGoogle Scholar
  16. 16.
    Zou Z, Chen H, Schmaier AA, Hynes RO, Kahn ML. Structurefunction analysis reveals discrete β3 integrin inside-out and outsidein signaling pathways in platelets. Blood 2007; 109(8): 3284–3290PubMedCrossRefGoogle Scholar
  17. 17.
    Lerea KM, Cordero KP, Sakariassen KS, Kirk RI, Fried VA. Phosphorylation sites in the integrin β3 cytoplasmic domain in intact platelets. J Biol Chem 1999; 274(4): 1914–1919PubMedCrossRefGoogle Scholar
  18. 18.
    Xi X, Flevaris P, Stojanovic A, Chishti A, Phillips DR, Lam SC, Du X. Tyrosine phosphorylation of the integrin β3 subunit regulates β3 cleavage by calpain. J Biol Chem 2006; 281(40): 29426–29430PubMedCrossRefGoogle Scholar
  19. 19.
    Kuchay SM, Kim N, Grunz EA, Fay WP, Chishti AH. Double knockouts reveal that protein tyrosine phosphatase 1B is a physiological target of calpain-1 in platelets. Mol Cell Biol 2007; 27(17): 6038–6052PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Kuchay SM, Wieschhaus AJ, Marinkovic M, Herman IM, Chishti AH. Targeted gene inactivation reveals a functional role of calpain-1 in platelet spreading. J Thromb Haemost 2012; 10(6): 1120–1132PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Ablooglu AJ, Kang J, Petrich BG, Ginsberg MH, Shattil SJ. Antithrombotic effects of targeting αIIbβ3 signaling in platelets. Blood 2009; 113(15): 3585–3592PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Tao L, Zhang Y, Xi X, Kieffer N. Recent advances in the understanding of the molecular mechanisms regulating platelet integrin αIIbβ3 activation. Protein Cell 2010; 1(7): 627–637PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Gu M, Xi X, Englund GD, Berndt MC, Du X. Analysis of the roles of 14-3-3 in the platelet glycoprotein Ib-IX-mediated activation of integrin α(IIb)β(3) using a reconstituted mammalian cell expression model. J Cell Biol 1999; 147(5): 1085–1096PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Xi X, Bodnar RJ, Li Z, Lam SC, Du X. Critical roles for the COOHterminal NITY and RGT sequences of the integrin β3 cytoplasmic domain in inside-out and outside-in signaling. J Cell Biol 2003; 162(2): 329–339PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Chen YP, O’Toole TE, Shipley T, Forsyth J, LaFlamme SE, Yamada KM, Shattil SJ, Ginsberg MH. “Inside-out” signal transduction inhibited by isolated integrin cytoplasmic domains. J Biol Chem 1994; 269(28): 18307–18310PubMedGoogle Scholar
  26. 26.
    Berrier AL, Mastrangelo AM, Downward J, Ginsberg M, LaFlamme SE. Activated R-ras, Rac1, PI 3-kinase and PKCepsilon can each restore cell spreading inhibited by isolated integrin β1 cytoplasmic domains. J Cell Biol 2000; 151(7): 1549–1560PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Mastrangelo AM, Homan SM, Humphries MJ, LaFlamme SE. Amino acid motifs required for isolated β cytoplasmic domains to regulate ‘in trans’ β1 integrin conformation and function in cell attachment. J Cell Sci 1999; 112(Pt 2): 217–229PubMedGoogle Scholar
  28. 28.
    Honda S, Shirotani-Ikejima H, Tadokoro S, Maeda Y, Kinoshita T, Tomiyama Y, Miyata T. Integrin-linked kinase associated with integrin activation. Blood 2009; 113(21): 5304–5313PubMedCrossRefGoogle Scholar
  29. 29.
    Iacobucci I, Di Rorà AG, Falzacappa MV, Agostinelli C, Derenzini E, Ferrari A, Papayannidis C, Lonetti A, Righi S, Imbrogno E, Pomella S, Venturi C, Guadagnuolo V, Cattina F, Ottaviani E, Abbenante MC, Vitale A, Elia L, Russo D, Zinzani PL, Pileri S, Pelicci PG, Martinelli G. In vitro and in vivo single-agent efficacy of checkpoint kinase inhibition in acute lymphoblastic leukemia. J Hematol Oncol 2015; 8(1): 125PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Du X, Saido TC, Tsubuki S, Indig FE, Williams MJ, Ginsberg MH. Calpain cleavage of the cytoplasmic domain of the integrin β3 subunit. J Biol Chem 1995; 270(44): 26146–26151PubMedCrossRefGoogle Scholar
  31. 31.
    Tao L, Hang J, Lü Y, Zhou Y, Cui X, Ruan Z, Xi X. Analysis of the regulatory mechanisms of the RGT sequence of integrin β3 cytoplasmic tail in signal transduction by using a dominant negative model. Chin J Cell Biol 2012; 34(2): 135–145Google Scholar
  32. 32.
    Berrier AL, Jones CW, LaFlamme SE. Tac-β1 inhibits FAK activation and Src signaling. Biochem Biophys Res Commun 2008; 368(1): 62–67PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Calderwood DA, Tai V, Di Paolo G, De Camilli P, Ginsberg MH. Competition for talin results in trans-dominant inhibition of integrin activation. J Biol Chem 2004; 279(28): 28889–28895PubMedCrossRefGoogle Scholar
  34. 34.
    Wu Y, Span LM, Nygren P, Zhu H, Moore DT, Cheng H, Roder H, DeGrado WF, Bennett JS. The tyrosine kinase c-Src specifically binds to the active integrin αIIbβ3 to initiate outside-in signaling in platelets. J Biol Chem 2015; 290(25): 15825–15834PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Legate KR, Fässler R. Mechanisms that regulate adaptor binding to β-integrin cytoplasmic tails. J Cell Sci 2009; 122(Pt 2): 187–198PubMedCrossRefGoogle Scholar
  36. 36.
    Bledzka K, Bialkowska K, Nie H, Qin J, Byzova T,Wu C, Plow EF, Ma YQ. Tyrosine phosphorylation of integrin β3 regulates kindlin-2 binding and integrin activation. J Biol Chem 2010; 285(40): 30370–30374PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Ma YQ, Qin J, Wu C, Plow EF. Kindlin-2 (Mig-2): a co-activator of β3 integrins. J Cell Biol 2008; 181(3): 439–446PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Buitrago L, Rendon A, Liang Y, Simeoni I, Negri A; ThromboGenomics Consortium, Filizola M, Ouwehand WH, Coller BS. αIIbβ3 variants defined by next-generation sequencing: predicting variants likely to cause Glanzmann thrombasthenia. Proc Natl Acad Sci USA 2015; 112(15): E1898–E1907PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Kato M, Chou TF, Yu CZ, DeModena J, Sternberg PW. LINKIN, a new transmembrane protein necessary for cell adhesion. eLife 2014; 3: e04449CrossRefGoogle Scholar
  40. 40.
    Schoenwaelder SM, Yuan Y, Cooray P, Salem HH, Jackson SP. Calpain cleavage of focal adhesion proteins regulates the cytoskeletal attachment of integrin αIIbβ3 (platelet glycoprotein IIb/IIIa) and the cellular retraction of fibrin clots. J Biol Chem 1997; 272(3): 1694–1702PubMedCrossRefGoogle Scholar
  41. 41.
    Shi X, Yang J, Huang J, Long Z, Ruan Z, Xiao B, Xi X. Effects of different shear rates on the attachment and detachment of platelet thrombi. Mol Med Rep 2016; 13(3): 2447–2456PubMedPubMedCentralGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jiansong Huang
    • 1
    • 2
  • Yulan Zhou
    • 1
    • 3
  • Xiaoyu Su
    • 1
  • Yuanjing Lyu
    • 1
  • Lanlan Tao
    • 1
  • Xiaofeng Shi
    • 1
    • 4
  • Ping Liu
    • 1
    • 5
  • Zhangbiao Long
    • 1
    • 6
  • Zheng Ruan
    • 1
  • Bing Xiao
    • 1
  • Wenda Xi
    • 7
  • Quansheng Zhou
    • 8
  • Jianhua Mao
    • 1
    Email author
  • Xiaodong Xi
    • 1
    • 9
    Email author
  1. 1.State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of HematologyRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
  2. 2.Institute of Hematology, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
  3. 3.Department of HematologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
  4. 4.Department of HematologyAffiliated Hospital of Jiangsu UniversityZhenjiangChina
  5. 5.Department of Pediatrics, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
  6. 6.Department of Hematology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
  7. 7.Shanghai Institute of HypertensionRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
  8. 8.Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
  9. 9.Sino-French Research Centre for Life Sciences and GenomicsRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina

Personalised recommendations