Frontiers of Medicine

, Volume 9, Issue 3, pp 392–400 | Cite as

Ambient air pollution and lung disease in China: health effects, study design approaches and future research

  • Jeffrey H. MandelEmail author
  • Christine Wendt
  • Charles Lo
  • Guangbiao Zhou
  • Marshall Hertz
  • Gurumurthy Ramachandran


Ambient air pollution in China has worsened following dramatic increases in industrialization, automobile use and energy consumption. Particularly bothersome is the increase in the PM2.5 fraction of pollutants. This fraction has been associated with increasing rates of cardio-respiratory disease in China and elsewhere. Ambient pollutant levels have been described in many of China’s cities and are comparable to previous levels in southern California. Lung cancer mortality in China has increased since the 1970s and has been higher in men and in urban areas, the exact explanation for which has not been determined. The estimation of individual risk for Chinese citizens living in areas of air pollution will require further research. Occupational cohort and case-control designs each have unique attributes that could make them helpful to use in this setting. Other important future research considerations include detailed exposure assessment and the possible use of biomarkers as a means to better understand and manage the threat posed by air pollution in China.


air pollution PM2.5 lung disease study design epidemiology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen Z, Wang JN, Ma GX, Zhang YS. China tackles the health effects of air pollution. Lancet 2013; 382(9909): 1959–1960CrossRefPubMedGoogle Scholar
  2. 2.
  3. 3.
    Cheng S, Yang L, Zhou X, Wang Z, Zhou Y, Gao X, Nie W, Wang X, Xu P, Wang W. Evaluating PM2.5 ionic components and source apportionment in Jinan, China from 2004 to 2008 using trajectory statistical methods. J Environ Monit 2011; 13(6): 1662–1671CrossRefPubMedGoogle Scholar
  4. 4.
    Guo Y, Jia Y, Pan X, Liu L, Wichmann HE. The association between fine particulate air pollution and hospital emergency room visits for cardiovascular diseases in Beijing, China. Sci Total Environ 2009; 407(17): 4826–4830CrossRefPubMedGoogle Scholar
  5. 5.
    Pui DYH, Chen SC, Zuo Z. PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation. Particuology 2014; 13: 1–26CrossRefGoogle Scholar
  6. 6.
    WHO Country profile of environmental burden of disease: China. World Health Organization 2009 at:
  7. 7.
    Cao JJ, Shen ZX, Chow JC, Watson JG, Lee SC, Tie XX, Ho KF, Wang GH, Han YM. Winter and summer PM2.5 chemical compositions in fourteen Chinese cities. J Air Waste Manag Assoc 2012; 62(10): 1214–1226CrossRefPubMedGoogle Scholar
  8. 8.
    Chen SC, Tsai CJ, Huang CY, Chen HD, Chen SJ, Lin CC, Tsai JH, Chou CCK, Lung SCC, Huang WR, Roam GD, Wu WY, Smolik J, Dzumbova L. Chemical mass closure and chemical characteristics of ambient ultrafine particles and other PM fractions. Aerosol Sci Technol 2010; 44(9): 713–723CrossRefGoogle Scholar
  9. 9.
    Cao J, Xu H, Xu Q, Chen B, Kan H. Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted Chinese city. Environ Health Perspect 2012; 120(3): 373–378PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    U. S. EPA. Integrated science assessment for particulate matter (final report). Washington, D.C.: US EPA 2009Google Scholar
  11. 11.
    Guo Y, Tong S, Zhang Y, Barnett AG, Jia Y, Pan X. The relationship between particulate air pollution and emergency hospital visits for hypertension in Beijing, China. Sci Total Environ 2010; 408(20): 4446–4450CrossRefPubMedGoogle Scholar
  12. 12.
    Li P, Xin J, Wang Y, Wang S, Li G, Pan X, Liu Z, Wang L. The acute effects of fine particles on respiratory mortality and morbidity in Beijing, 2004–2009. Environ Sci Pollut Res Int 2013; 20(9): 6433–6444CrossRefPubMedGoogle Scholar
  13. 13.
    Wang X, Chen R, Meng X, Geng F, Wang C, Kan H. Associations between fine particle, coarse particle, black carbon and hospital visits in a Chinese city. Sci Total Environ 2013; 458-460: 1–6CrossRefPubMedGoogle Scholar
  14. 14.
    Qiao L, Cai J, Wang H, Wang W, Zhou M, Lou S, Chen R, Dai H, Chen C, Kan H. PM2.5 constituents and hospital emergency-room visits in Shanghai, China. Environ Sci Technol 2014; 48(17): 10406–10414CrossRefPubMedGoogle Scholar
  15. 15.
    Parrish DP. Air Pollution in Developing Mega Cities-Something Old, Something New-Lessons from Los Angeles. Cooperative Institute for Research in Environmental Sciences, University of Colorado Presentation: Bolder Colorado on August 7, 2014Google Scholar
  16. 16.
    Franklin M, Zeka A, Schwartz J. Association between PM2.5 and allcause and specific-cause mortality in 27 US communities. J Expo Sci Environ Epidemiol 2007; 17(3): 279–287CrossRefPubMedGoogle Scholar
  17. 17.
    Kaufman JD, Adar SD, Allen RW, Barr RG, Budoff MJ, Burke GL, Casillas AM, Cohen MA, Curl CL, Daviglus ML, Diez Roux AV, Jacobs DR Jr, Kronmal RA, Larson TV, Liu SL, Lumley T, Navas-Acien A, O’Leary DH, Rotter JI, Sampson PD, Sheppard L, Siscovick DS, Stein JH, Szpiro AA, Tracy RP. Prospective study of particulate air pollution exposures, subclinical atherosclerosis, and clinical cardiovascular disease: the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Am J Epidemiol 2012; 176 (9): 825–837PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Yorifuji T, Suzuki E, Kashima S. Outdoor air pollution and out-ofhospital cardiac arrest in Okayama, Japan. J Occup Environ Med 2014; 56(10): 1019–1023CrossRefPubMedGoogle Scholar
  19. 19.
    Pope CA 3rd, Burnett RT, Krewski D, Jerrett M, Shi Y, Calle EE, Thun MJ. Cardiovascular mortality and exposure to airborne fine particulate matter and cigarette smoke: shape of the exposureresponse relationship. Circulation 2009; 120(11): 941–948CrossRefPubMedGoogle Scholar
  20. 20.
    Lee SL, Wong WH, Lau YL. Association between air pollution and asthma admission among children in Hong Kong. Clin Exp Allergy 2006; 36(9): 1138–1146PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E, Stafoggia M, Weinmayr G, Hoffmann B, Fischer P, Nieuwenhuijsen MJ, Brunekreef B, Xun WW, Katsouyanni K, Dimakopoulou K, Sommar J, Forsberg B, Modig L, Oudin A, Oftedal B, Schwarze PE, Nafstad P, De Faire U, Pedersen NL, Östenson CG, Fratiglioni L, Penell J, Korek M, Pershagen G, Eriksen KT, Sørensen M, Tjønneland A, Ellermann T, Eeftens M, Peeters PH, Meliefste K, Wang M, Bueno-de-Mesquita B, Key TJ, de Hoogh K, Concin H, Nagel G, Vilier A, Grioni S, Krogh V, Tsai MY, Ricceri F, Sacerdote C, Galassi C, Migliore E, Ranzi A, Cesaroni G, Badaloni C, Forastiere F, Tamayo I, Amiano P, Dorronsoro M, Trichopoulou A, Bamia C, Vineis P, Hoek G. Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol 2013; 14(9): 813–822CrossRefPubMedGoogle Scholar
  22. 22.
    Ailshire JA, Crimmins EM. Fine particulate matter air pollution and cognitive function among older US adults. Am J Epidemiol 2014; 180(4): 359–366PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K. Sizedependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 2001; 175(3): 191–199CrossRefPubMedGoogle Scholar
  24. 24.
    Tran CL, Buchanan D, Cullen RT, Searl A, Jones AD, Donaldson K. Inhalation of poorly soluble particles. II. Influence Of particle surface area on inflammation and clearance. Inhal Toxicol 2000; 12(12): 1113–1126CrossRefPubMedGoogle Scholar
  25. 25.
    Maynard RL, Maynard RL. A derived association between ambient aerosol surface area and excess mortality using historic time series data. Atmos Environ 2002; 36(36-37): 5561–5567CrossRefGoogle Scholar
  26. 26.
    Beelen R, Stafoggia M, Raaschou-Nielsen O, Andersen ZJ, Xun WW, Katsouyanni K, Dimakopoulou K, Brunekreef B, Weinmayr G, Hoffmann B, Wolf K, Samoli E, Houthuijs D, Nieuwenhuijsen M, Oudin A, Forsberg B, Olsson D, Salomaa V, Lanki T, Yli-Tuomi T, Oftedal B, Aamodt G, Nafstad P, De Faire U, Pedersen NL, Östenson CG, Fratiglioni L, Penell J, Korek M, Pyko A, Eriksen KT, Tjønneland A, Becker T, Eeftens M, Bots M, Meliefste K, Wang M, Bueno-de-Mesquita B, Sugiri D, Krämer U, Heinrich J, de Hoogh K, Key T, Peters A, Cyrys J, Concin H, Nagel G, Ineichen A, Schaffner E, Probst-Hensch N, Dratva J, Ducret-Stich R, Vilier A, Clavel-Chapelon F, Stempfelet M, Grioni S, Krogh V, Tsai MY, Marcon A, Ricceri F, Sacerdote C, Galassi C, Migliore E, Ranzi A, Cesaroni G, Badaloni C, Forastiere F, Tamayo I, Amiano P, Dorronsoro M, Katsoulis M, Trichopoulou A, Vineis P, Hoek G. Long-term exposure to air pollution and cardiovascular mortality: an analysis of 22 European cohorts. Epidemiology 2014; 25(3): 368–378CrossRefPubMedGoogle Scholar
  27. 27.
    Shang Y, Sun Z, Cao J, Wang X, Zhong L, Bi X, Li H, Liu W, Zhu T, Huang W. Systematic review of Chinese studies of short-term exposure to air pollution and daily mortality. Environ Int 2013; 54: 100–111CrossRefPubMedGoogle Scholar
  28. 28.
    Vedal S, Sullivan J. Particulate matter. In: Rom WN, Markowitz S. Environmental and Occupational Medicine. 4th ed. Philadelphia, PA: Wolters Kluwer/Lippincott, Williams and Wilkins, 2007: 1487–1506Google Scholar
  29. 29.
    Samet JM, Bell ML. Air polution: epidemiology. In: Rom WN, Markowitz S. Environmental and Occupational Medicine. 4th ed. Philadelphia, PA: Wolters Kluwer/Lippincott, Williams and Wilkins, 2007: 1400–1420Google Scholar
  30. 30.
    Kelly E, Owen CA, Pinto-Plata V, Celli BR. The role of systemic inflammatory biomarkers to predict mortality in chronic obstructive pulmonary disease. Expert Rev Respir Med 2013; 7(1): 57–64CrossRefPubMedGoogle Scholar
  31. 31.
    Neophytou AM, Costello S, Brown DM, Picciotto S, Noth EM, Hammond SK, Cullen MR, Eisen EA. Marginal structural models in occupational epidemiology: application in a study of ischemic heart disease incidence and PM2.5 in the US aluminum industry. Am J Epidemiol 2014; 180(6): 608–615CrossRefPubMedGoogle Scholar
  32. 32.
    Esposito S, Tenconi R, Lelii M, Preti V, Nazzari E, Consolo S, Patria MF. Possible molecular mechanisms linking air pollution and asthma in children. BMC Pulm Med 2014; 14(1): 31PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Barnett AG, Williams GM, Schwartz J, Neller AH, Best TL, Petroeschevsky AL, Simpson RW. Air pollution and child respiratory health: a case-crossover study in Australia and New Zealand. Am J Respir Crit Care Med 2005; 171(11): 1272–1278CrossRefPubMedGoogle Scholar
  34. 34.
    Vineis P, Husgafvel-Pursiainen K. Air pollution and cancer: biomarker studies in human populations. Carcinogenesis 2005; 26 (11): 1846–1855CrossRefPubMedGoogle Scholar
  35. 35.
    Palli D, Russo A, Masala G, Saieva C, Guarrera S, Carturan S, Munnia A, Matullo G, Peluso M. DNA adduct levels and DNA repair polymorphisms in traffic-exposed workers and a general population sample. Int J Cancer 2001; 94(1): 121–127CrossRefPubMedGoogle Scholar
  36. 36.
    Ruchirawa M, Mahidol C, Tangjarukij C, Pui-ock S, Jensen O, Kampeerawipakorn O, Tuntaviroon J, Aramphongphan A, Autrup H. Exposure to genotoxins present in ambient air in Bangkok, Thailand-particle associated polycylic aromatic hydrocarbons and biomarkers. Sci Total Environ 2002; 287(1-2): 121–132CrossRefPubMedGoogle Scholar
  37. 37.
    Demetriou CA, Raaschou-Nielsen O, Loft S, Møller P, Vermeulen R, Palli D, Chadeau-Hyam M, Xun WW, Vineis P. Biomarkers of ambient air pollution and lung cancer: a systematic review. Occup Environ Med 2012; 69(9): 619–627CrossRefPubMedGoogle Scholar
  38. 38.
    Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 2000; 342(12): 836–843CrossRefPubMedGoogle Scholar
  39. 39.
    Rothman KJ, Greenland S, Lash TL. Modern Epidemiology. Chapters 6-12 (Study Design and Conduct). Philadelphia, PA: Wolters-Kluwer/Lippincott, Williams and Wilkins, 2008: 87–209Google Scholar
  40. 40.
    Elwood M. Study designs which can demonstrate and test causation. In: Elwood M. Critical Appraisal of Epidemiological Studies and Clinical Trials. 3rd ed. New York, NY: Oxford University Press, 2007: 19–52CrossRefGoogle Scholar
  41. 41.
    Michaels RA. Airborne particle excursions contributing to daily average particle levels may be managed via a 1-hour standard, with possible public health benefits. Aerosol Sci Technol 1996; 25(4): 437–444CrossRefGoogle Scholar
  42. 42.
    Michaels RA. Permissible daily airborne particle mass levels encompass brief excursions to the “London Fog” range, which may contribute to daily mortality and morbidity in communities. Appl Occup Environ Hyg 1998; 13(6): 385–394CrossRefGoogle Scholar
  43. 43.
    Chen WQ, Zhang SW, Zou XN, Zhao P. Cancer incidence and mortality in China, 2006. Chin J Cancer Res 2011; 23(1): 3–9PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Chen WQ, Zeng HM, Zheng RS, Zhang SW, He J. Cancer incidence and mortality in China, 2007. Chin J Cancer Res 2012; 24(1): 1–8PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Chen WQ, Zheng RS, Zhang SW, Li N, Zhao P, Li GL, Wu LY, He J. Report of incidence and mortality in China cancer registries, 2008. Chin J Cancer Res 2012; 24(3): 171–180PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Chen W, Zheng R, Zhang S, Zhao P, Li G, Wu L, He J. Report of incidence and mortality in China cancer registries, 2009. Chin J Cancer Res 2013; 25(1): 10–21PubMedCentralPubMedGoogle Scholar
  47. 47.
    Chen W, Zheng R, Zhang S, Zhao P, Zeng H, Zou X, He J. Annual report on status of cancer in China, 2010. Chin J Cancer Res 2014; 26(1): 48–Google Scholar
  48. 48.
    Chen W, Zheng R, Zeng H, Zhang S. The epidemiology of lung cancer in China. J Cancer Biol Res 2014; 2(1): 1043Google Scholar
  49. 49.
    Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG Jr, Speizer FEN. An association between air pollution and mortality in six U.S. cities. N Engl J Med 1993; 329 (24): 1753–1759CrossRefPubMedGoogle Scholar
  50. 50.
    Jerrett M, Shankardass K, Berhane K, Gauderman WJ, Künzli N, Avol E, Gilliland F, Lurmann F, Molitor JN, Molitor JT, Thomas DC, Peters J, McConnell R. Traffic-related air pollution and asthma onset in children: a prospective cohort study with individual exposure measurement. Environ Health Perspect 2008; 116(10): 1433–1438PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jeffrey H. Mandel
    • 1
    Email author
  • Christine Wendt
    • 2
  • Charles Lo
    • 3
  • Guangbiao Zhou
    • 4
  • Marshall Hertz
    • 5
  • Gurumurthy Ramachandran
    • 1
  1. 1.University of Minnesota School of Public HealthMinneapolisUSA
  2. 2.Veteran’s Administration HospitalUniversity of Minnesota Medical SchoolMinneapolisUSA
  3. 3.Mechanical Engineering DepartmentUniversity of MinnesotaMinneapolisUSA
  4. 4.State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of ZoologyChinese Academy of SciencesBeijingChina
  5. 5.University of Minnesota Medical SchoolMinneapolisUSA

Personalised recommendations