Advertisement

Frontiers of Medicine

, Volume 7, Issue 1, pp 4–13 | Cite as

Metabolomics in human type 2 diabetes research

  • Jingyi Lu
  • Guoxiang Xie
  • Weiping Jia
  • Wei JiaEmail author
Review

Abstract

The high prevalence of diabetes and diabetic complications has caused a huge burden on the modern society. Although scientific advances have led to effective strategies for preventing and treating diabetes over the past several decades, little progress has been made toward curing the disease or even getting it under control, from a public health and overall societal standpoint. There is still a lack of reliable biomarkers indicative of metabolic alterations associated with diabetes and different drug responses, highlighting the need for the development of early diagnostic and prognostic markers for diabetes and diabetic complications. The emergence of metabolomics has allowed researchers to systemically measure the small molecule metabolites, which are sensitive to the changes of both environmental and genetic factors and therefore, could be regarded as the link between genotypes and phenotypes. During the last decade, the progression made in metabolomics has provided insightful information on disease development and disease onset prediction. Recent studies using metabolomics approach coupled with statistical tools to predict incident diabetes revealed a number of metabolites that are significantly altered, including branched-chain and aromatic amino acids, such as isoleucine, leucine, valine, tyrosine and phenylalanine, as diagnostic or highly-significant predictors of future diabetes. This review summarizes the current findings of metabolomic studies in human investigations with the most common form of diabetes, type 2 diabetes.

Keywords

metabolomics type 2 diabetes metabolic pathway mass spectrometry nuclear magnetic resonance (NMR) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    World Health Organization. Diabetes: Fact sheet N°312. 2011Google Scholar
  2. 2.
    National Diabetes Information Clearinghouse (NDIC). Complications of Diabetes. 2012Google Scholar
  3. 3.
    Friedrich N. Metabolomics in diabetes research. J Endocrinol 2012; 215(1): 29–42PubMedCrossRefGoogle Scholar
  4. 4.
    Pal A, McCarthy M. The genetics of type 2 diabetes and its clinical relevance. Clin Genet 2012 Nov 20. [Epub ahead of print] doi: 10.1111/cge.12055Google Scholar
  5. 5.
    Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, Zeggini E, Huth C, Aulchenko YS, Thorleifsson G, McCulloch LJ, Ferreira T, Grallert H, Amin N, Wu G, Willer CJ, Raychaudhuri S, McCarroll SA, Langenberg C, Hofmann OM, Dupuis J, Qi L, Segrè AV, van Hoek M, Navarro P, Ardlie K, Balkau B, Benediktsson R, Bennett AJ, Blagieva R, Boerwinkle E, Bonnycastle LL, Bengtsson Boström K, Bravenboer B, Bumpstead S, Burtt NP, Charpentier G, Chines PS, Cornelis M, Couper DJ, Crawford G, Doney AS, Elliott KS, Elliott AL, Erdos MR, Fox CS, Franklin CS, Ganser M, Gieger C, Grarup N, Green T, Griffin S, Groves CJ, Guiducci C, Hadjadj S, Hassanali N, Herder C, Isomaa B, Jackson AU, Johnson PR, Jørgensen T, Kao WH, Klopp N, Kong A, Kraft P, Kuusisto J, Lauritzen T, Li M, Lieverse A, Lindgren CM, Lyssenko V, Marre M, Meitinger T, Midthjell K, Morken MA, Narisu N, Nilsson P, Owen KR, Payne F, Perry JR, Petersen AK, Platou C, Proença C, Prokopenko I, Rathmann W, Rayner NW, Robertson NR, Rocheleau G, Roden M, Sampson MJ, Saxena R, Shields BM, Shrader P, Sigurdsson G, Sparsø T, Strassburger K, Stringham HM, Sun Q, Swift AJ, Thorand B, Tichet J, Tuomi T, van Dam RM, van Haeften TW, van Herpt T, van Vliet-Ostaptchouk JV, Walters GB, Weedon MN, Wijmenga C, Witteman J, Bergman RN, Cauchi S, Collins FS, Gloyn AL, Gyllensten U, Hansen T, Hide WA, Hitman GA, Hofman A, Hunter DJ, Hveem K, Laakso M, Mohlke KL, Morris AD, Palmer CN, Pramstaller PP, Rudan I, Sijbrands E, Stein LD, Tuomilehto J, Uitterlinden A, Walker M, Wareham NJ, Watanabe RM, Abecasis GR, Boehm BO, Campbell H, Daly MJ, Hattersley AT, Hu FB, Meigs JB, Pankow JS, Pedersen O, Wichmann HE, Barroso I, Florez JC, Frayling TM, Groop L, Sladek R, Thorsteinsdottir U, Wilson JF, Illig T, Froguel P, van Duijn CM, Stefansson K, Altshuler D, Boehnke M, McCarthy MI; MAGIC investigators; GIANT Consortium. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 2010; 42(7): 579–589PubMedCrossRefGoogle Scholar
  6. 6.
    Fiehn O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics 2001; 2(3): 155–168PubMedCrossRefGoogle Scholar
  7. 7.
    Nicholson JK, Lindon JC, Holmes E. “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999; 29(11): 1181–1189PubMedCrossRefGoogle Scholar
  8. 8.
    Lucio M, Fekete A, Weigert C, Wägele B, Zhao X, Chen J, Fritsche A, Häring HU, Schleicher ED, Xu G, Schmitt-Kopplin P, Lehmann R. Insulin sensitivity is reflected by characteristic metabolic fingerprints-a Fourier transform mass spectrometric non-targeted metabolomics approach. PLoS ONE 2010; 5(10): e13317PubMedCrossRefGoogle Scholar
  9. 9.
    Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, Rochon J, Gallup D, Ilkayeva O, Wenner BR, Yancy WS Jr, Eisenson H, Musante G, Surwit RS, Millington DS, Butler MD, Svetkey LP. A branchedchain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 2009; 9(4): 311–326PubMedCrossRefGoogle Scholar
  10. 10.
    Qiu Y, Cai G, Su M, Chen T, Zheng X, Xu Y, Ni Y, Zhao A, Xu LX, Cai S, Jia W. Serum metabolite profiling of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS. J Proteome Res 2009; 8(10): 4844–4850PubMedCrossRefGoogle Scholar
  11. 11.
    Lanza IR, Zhang S, Ward LE, Karakelides H, Raftery D, Nair KS. Quantitative metabolomics by H-NMR and LC-MS/MS confirms altered metabolic pathways in diabetes. PLoS ONE 2010; 5(5): e10538PubMedCrossRefGoogle Scholar
  12. 12.
    Bernini P, Bertini I, Luchinat C, Tenori L, Tognaccini A. The cardiovascular risk of healthy individuals studied by NMR metabonomics of plasma samples. J Proteome Res 2011; 10(11): 4983–4992PubMedCrossRefGoogle Scholar
  13. 13.
    Xie G, Zheng X, Qi X, Cao Y, Chi Y, Su M, Ni Y, Qiu Y, Liu Y, Li H, Zhao A, Jia W. Metabonomic evaluation of melamine-induced acute renal toxicity in rats. J Proteome Res 2010; 9(1): 125–133PubMedCrossRefGoogle Scholar
  14. 14.
    Chen T, Xie G, Wang X, Fan J, Qiu Y, Zheng X, Qi X, Cao Y, Su M, Xu LX, Yen Y, Liu P, Jia W. Serum and urine metabolite profiling reveals potential biomarkers of human hepatocellular carcinoma. Mol Cell Proteomics 2011;10(7):M110.004945PubMedCrossRefGoogle Scholar
  15. 15.
    Lenz EM, Wilson ID. Analytical strategies in metabonomics. J Proteome Res 2007; 6(2): 443–458PubMedCrossRefGoogle Scholar
  16. 16.
    Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, Nicholson JK. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2007; 2(11): 2692–2703PubMedCrossRefGoogle Scholar
  17. 17.
    Bictash M, Ebbels TM, Chan Q, Loo RL, Yap IK, Brown IJ, de Iorio M, Daviglus ML, Holmes E, Stamler J, Nicholson JK, Elliott P. Opening up the “Black Box”: metabolic phenotyping and metabolome-wide association studies in epidemiology. J Clin Epidemiol 2010; 63(9): 970–979PubMedCrossRefGoogle Scholar
  18. 18.
    Büscher JM, Czernik D, Ewald JC, Sauer U, Zamboni N. Crossplatform comparison of methods for quantitative metabolomics of primary metabolism. Anal Chem 2009; 81(6): 2135–2143PubMedCrossRefGoogle Scholar
  19. 19.
    Kim HK, Choi YH, Verpoorte R. NMR-based plant metabolomics: where do we stand, where do we go? Trends Biotechnol 2011; 29(6): 267–275PubMedCrossRefGoogle Scholar
  20. 20.
    Blumich B. Essential NMR: For Scientists and Engineers. Springer-Verlag Berlin and Heidelberg GmbH & Co. K, 2005Google Scholar
  21. 21.
    Lu J, Zhou J, Bao Y, Chen T, Zhang Y, Zhao A, Qiu Y, Xie G, Wang C, Jia W, Jia W. Serum metabolic signatures of fulminant type 1 diabetes. J Proteome Res 2012; 11(9): 4705–4711PubMedCrossRefGoogle Scholar
  22. 22.
    Messana I, Forni F, Ferrari F, Rossi C, Giardina B, Zuppi C. Proton nuclear magnetic resonance spectral profiles of urine in type II diabetic patients. Clin Chem 1998; 44(7): 1529–1534PubMedGoogle Scholar
  23. 23.
    Salek RM, Maguire ML, Bentley E, Rubtsov DV, Hough T, Cheeseman M, Nunez D, Sweatman BC, Haselden JN, Cox RD, Connor SC, Griffin JL. A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol Genomics 2007; 29(2): 99–108PubMedGoogle Scholar
  24. 24.
    Yamanouchi T, Tachibana Y, Akanuma H, Minoda S, Shinohara T, Moromizato H, Miyashita H, Akaoka I. Origin and disposal of 1,5-anhydroglucitol, a major polyol in the human body. Am J Physiol 1992; 263(2 Pt 1): E268–E273PubMedGoogle Scholar
  25. 25.
    Yamanouchi T, Akanuma H, Asano T, Konishi C, Akaoka I, Akanuma Y. Reduction and recovery of plasma 1,5-anhydro-Dglucitol level in diabetes mellitus. Diabetes 1987; 36(6): 709–715PubMedCrossRefGoogle Scholar
  26. 26.
    Dungan KM, Buse JB, Largay J, Kelly MM, Button EA, Kato S, Wittlin S. 1,5-anhydroglucitol and postprandial hyperglycemia as measured by continuous glucose monitoring system in moderately controlled patients with diabetes. Diabetes Care 2006; 29(6): 1214–1219PubMedCrossRefGoogle Scholar
  27. 27.
    Yamanouchi T, Inoue T, Ogata E, Kashiwabara A, Ogata N, Sekino N, Yoshimura T, Ichiyanagi K, Kawasaki T. Post-load glucose measurements in oral glucose tolerance tests correlate well with 1,5-anhydroglucitol, an indicator of overall glycaemic state, in subjects with impaired glucose tolerance. Clin Sci (Lond) 2001; 101(3): 227–233CrossRefGoogle Scholar
  28. 28.
    Yamanouchi T, Ogata N, Tagaya T, Kawasaki T, Sekino N, Funato H, Akaoka L, Miyashita H. Clinical usefulness of serum 1,5-anhydroglucitol in monitoring glycaemic control. Lancet 1996; 347(9014): 1514–1518PubMedCrossRefGoogle Scholar
  29. 29.
    Hanefeld M, Fischer S, Julius U, Schulze J, Schwanebeck U, Schmechel H, Ziegelasch HJ, Lindner J. Risk factors for myocardial infarction and death in newly detected NIDDM: the Diabetes Intervention Study, 11-year follow-up. Diabetologia 1996; 39(12): 1577–1583PubMedCrossRefGoogle Scholar
  30. 30.
    Muggeo M, Zoppini G, Bonora E, Brun E, Bonadonna RC, Moghetti P, Verlato G. Fasting plasma glucose variability predicts 10-year survival of type 2 diabetic patients: the Verona Diabetes Study. Diabetes Care 2000; 23(1): 45–50PubMedCrossRefGoogle Scholar
  31. 31.
    Temelkova-Kurktschiev TS, Koehler C, Henkel E, Leonhardt W, Fuecker K, Hanefeld M. Postchallenge plasma glucose and glycemic spikes are more strongly associated with atherosclerosis than fasting glucose or HbA1c level. Diabetes Care 2000; 23(12): 1830–1834PubMedCrossRefGoogle Scholar
  32. 32.
    Erlinger TP, Brancati FL. Postchallenge hyperglycemia in a national sample of U.S. adults with type 2 diabetes. Diabetes Care 2001; 24(10): 1734–1738PubMedCrossRefGoogle Scholar
  33. 33.
    Kannel WB. Lipids, diabetes, and coronary heart disease: insights from the Framingham Study. Am Heart J 1985; 110(5): 1100–1107PubMedCrossRefGoogle Scholar
  34. 34.
    Krauss RM, Siri PW. Dyslipidemia in type 2 diabetes. Med Clin North Am 2004; 88(4): 897–909, xPubMedCrossRefGoogle Scholar
  35. 35.
    Taskinen MR. Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia 2003; 46(6): 733–749PubMedCrossRefGoogle Scholar
  36. 36.
    Fiehn O, Garvey WT, Newman JW, Lok KH, Hoppel CL, Adams SH. Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PLoS ONE 2010; 5(12): e15234PubMedCrossRefGoogle Scholar
  37. 37.
    Balasse EO, Féry F. Ketone body production and disposal: effects of fasting, diabetes, and exercise. Diabetes Metab Rev 1989; 5(3): 247–270PubMedCrossRefGoogle Scholar
  38. 38.
    Suhre K, Meisinger C, Döring A, Altmaier E, Belcredi P, Gieger C, Chang D, Milburn MV, Gall WE, Weinberger KM, Mewes HW, Hrabé de Angelis M, Wichmann HE, Kronenberg F, Adamski J, Illig T. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS ONE 2010; 5(11): e13953PubMedCrossRefGoogle Scholar
  39. 39.
    Blaak EE, van Aggel-Leijssen DP, Wagenmakers AJ, Saris WH, van Baak MA. Impaired oxidation of plasma-derived fatty acids in type 2 diabetic subjects during moderate-intensity exercise. Diabetes 2000; 49(12): 2102–2107PubMedCrossRefGoogle Scholar
  40. 40.
    Kelley DE. Skeletal muscle fat oxidation: timing and flexibility are everything. J Clin Invest 2005; 115(7): 1699–1702PubMedCrossRefGoogle Scholar
  41. 41.
    Kelley DE, Goodpaster B, Wing RR, Simoneau JA. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol 1999; 277(6 Pt 1): E1130–E1141PubMedGoogle Scholar
  42. 42.
    Adams SH, Hoppel CL, Lok KH, Zhao L, Wong SW, Minkler PE, Hwang DH, Newman JW, Garvey WT. Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid beta-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women. J Nutr 2009; 139(6): 1073–1081PubMedCrossRefGoogle Scholar
  43. 43.
    Kramer HF, Goodyear LJ. Exercise, MAPK, and NF-kappaB signaling in skeletal muscle. J Appl Physiol 2007; 103(1): 388–395PubMedCrossRefGoogle Scholar
  44. 44.
    Tilg H, Moschen AR. Inflammatory mechanisms in the regulation of insulin resistance. Mol Med 2008; 14(3–4): 222–231PubMedGoogle Scholar
  45. 45.
    Mihalik SJ, Goodpaster BH, Kelley DE, Chace DH, Vockley J, Toledo FG, DeLany JP. Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity (Silver Spring) 2010; 18(9): 1695–1700CrossRefGoogle Scholar
  46. 46.
    Ha CY, Kim JY, Paik JK, Kim OY, Paik YH, Lee EJ, Lee JH. The association of specific metabolites of lipid metabolism with markers of oxidative stress, inflammation and arterial stiffness in men with newly diagnosed type 2 diabetes. Clin Endocrinol (Oxf) 2012; 76(5): 674–682CrossRefGoogle Scholar
  47. 47.
    Mihalik SJ, Michaliszyn SF, de las Heras J, Bacha F, Lee S, Chace DH, DeJesus VR, Vockley J, Arslanian SA. Metabolomic profiling of fatty acid and amino acid metabolism in youth with obesity and type 2 diabetes: evidence for enhanced mitochondrial oxidation. Diabetes Care 2012; 35(3): 605–611PubMedCrossRefGoogle Scholar
  48. 48.
    Cole LK, Vance JE, Vance DE. Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochim Biophys Acta 2012; 1821(5): 754–761PubMedCrossRefGoogle Scholar
  49. 49.
    Floegel A, Stefan N, Yu Z, Mühlenbruch K, Drogan D, Joost HG, Fritsche A, Häring HU, Hrabe de Angelis M, Peters A, Roden M, Prehn C, Wang-Sattler R, Illig T, Schulze MB, Adamski J, Boeing H, Pischon T. Identification of Serum Metabolites Associated With Risk of Type 2 Diabetes Using a Targeted Metabolomic Approach. Diabetes 2012 Oct 4. [Epub ahead of print] doi: 10.2337/db12-0495Google Scholar
  50. 50.
    Wang-Sattler R, Yu Z, Herder C, Messias AC, Floegel A, He Y, Heim K, Campillos M, Holzapfel C, Thorand B, Grallert H, Xu T, Bader E, Huth C, Mittelstrass K, Döring A, Meisinger C, Gieger C, Prehn C, Roemisch-Margl W, Carstensen M, Xie L, Yamanaka-Okumura H, Xing G, Ceglarek U, Thiery J, Giani G, Lickert H, Lin X, Li Y, Boeing H, Joost HG, de Angelis MH, Rathmann W, Suhre K, Prokisch H, Peters A, Meitinger T, Roden M, Wichmann HE, Pischon T, Adamski J, Illig T. Novel biomarkers for pre-diabetes identified by metabolomics. Mol Syst Biol 2012; 8: 615PubMedCrossRefGoogle Scholar
  51. 51.
    Felig P, Marliss E, Cahill GF Jr. Plasma amino acid levels and insulin secretion in obesity. N Engl J Med 1969; 281(15): 811–816PubMedCrossRefGoogle Scholar
  52. 52.
    Felig P, Wahren J, Hendler R, Brundin T. Splanchnic glucose and amino acid metabolism in obesity. J Clin Invest 1974; 53(2): 582–590PubMedCrossRefGoogle Scholar
  53. 53.
    Luetscher JA Jr. The Metabolism of Amino Acids in Diabetes Mellitus. J Clin Invest 1942; 21(3): 275–279PubMedCrossRefGoogle Scholar
  54. 54.
    Huffman KM, Shah SH, Stevens RD, Bain JR, Muehlbauer M, Slentz CA, Tanner CJ, Kuchibhatla M, Houmard JA, Newgard CB, Kraus WE. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care 2009; 32(9): 1678–1683PubMedCrossRefGoogle Scholar
  55. 55.
    Tai ES, Tan ML, Stevens RD, Low YL, Muehlbauer MJ, Goh DL, Ilkayeva OR, Wenner BR, Bain JR, Lee JJ, Lim SC, Khoo CM, Shah SH, Newgard CB. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia 2010; 53(4): 757–767PubMedCrossRefGoogle Scholar
  56. 56.
    Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox CS, Jacques PF, Fernandez C, O’Donnell CJ, Carr SA, Mootha VK, Florez JC, Souza A, Melander O, Clish CB, Gerszten RE. Metabolite profiles and the risk of developing diabetes. Nat Med 2011; 17(4): 448–453PubMedCrossRefGoogle Scholar
  57. 57.
    Zhang X, Wang Y, Hao F, Zhou X, Han X, Tang H, Ji L. Human serum metabonomic analysis reveals progression axes for glucose intolerance and insulin resistance statuses. J Proteome Res 2009; 8(11): 5188–5195PubMedCrossRefGoogle Scholar
  58. 58.
    Bao Y, Zhao T, Wang X, Qiu Y, Su M, Jia W, Jia W. Metabonomic variations in the drug-treated type 2 diabetes mellitus patients and healthy volunteers. J Proteome Res 2009; 8(4): 1623–1630PubMedCrossRefGoogle Scholar
  59. 59.
    Mochida T, Tanaka T, Shiraki Y, Tajiri H, Matsumoto S, Shimbo K, Ando T, Nakamura K, Okamoto M, Endo F. Time-dependent changes in the plasma amino acid concentration in diabetes mellitus. Mol Genet Metab 2011; 103(4): 406–409PubMedCrossRefGoogle Scholar
  60. 60.
    Phillips JD, Kushner JP. Fast track to the porphyrias. Nat Med 2005; 11(10): 1049–1050PubMedCrossRefGoogle Scholar
  61. 61.
    Gall WE, Beebe K, Lawton KA, Adam KP, Mitchell MW, Nakhle PJ, Ryals JA, Milburn MV, Nannipieri M, Camastra S, Natali A, Ferrannini E; RISC Study Group. alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS ONE 2010; 5(5): e10883PubMedCrossRefGoogle Scholar
  62. 62.
    Li X, Xu Z, Lu X, Yang X, Yin P, Kong H, Yu Y, Xu G. Comprehensive two-dimensional gas chromatography/time-offlight mass spectrometry for metabonomics: Biomarker discovery for diabetes mellitus. Anal Chim Acta 2009; 633(2): 257–262PubMedCrossRefGoogle Scholar
  63. 63.
    Mosharov E, Cranford MR, Banerjee R. The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the transsulfuration pathway and its regulation by redox changes. Biochemistry 2000; 39(42): 13005–13011PubMedCrossRefGoogle Scholar
  64. 64.
    Persa C, Pierce A, Ma Z, Kabil O, Lou MF. The presence of a transsulfuration pathway in the lens: a new oxidative stress defense system. Exp Eye Res 2004; 79(6): 875–886PubMedCrossRefGoogle Scholar
  65. 65.
    Kostolanská J, Jakus V, Barák L. HbA1c and serum levels of advanced glycation and oxidation protein products in poorly and well controlled children and adolescents with type 1 diabetes mellitus. J Pediatr Endocrinol Metab 2009; 22(5): 433–442PubMedCrossRefGoogle Scholar
  66. 66.
    Bennion LJ, Grundy SM. Effects of diabetes mellitus on cholesterol metabolism in man. N Engl J Med 1977; 296(24): 1365–1371PubMedCrossRefGoogle Scholar
  67. 67.
    Schwartz SL, Lai YL, Xu J, Abby SL, Misir S, Jones MR, Nagendran S. The effect of colesevelam hydrochloride on insulin sensitivity and secretion in patients with type 2 diabetes: a pilot study. Metab Syndr Relat Disord 2010; 8(2): 179–188PubMedCrossRefGoogle Scholar
  68. 68.
    Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, Hazen SL. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472(7341): 57–63PubMedCrossRefGoogle Scholar
  69. 69.
    McGill HC Jr, McMahan CA. Determinants of atherosclerosis in the young. Am J Cardiol 1998; 82(10B): 30T–36TPubMedCrossRefGoogle Scholar
  70. 70.
    Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation 1998; 97(18): 1837–1847PubMedCrossRefGoogle Scholar
  71. 71.
    al-Waiz M, Mikov M, Mitchell SC, Smith RL. The exogenous origin of trimethylamine in the mouse. Metabolism 1992; 41(2): 135–136PubMedCrossRefGoogle Scholar
  72. 72.
    Swann JR, Want EJ, Geier FM, Spagou K, Wilson ID, Sidaway JE, Nicholson JK, Holmes E. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Natl Acad Sci USA 2011; 108(Suppl 1): 4523–4530PubMedCrossRefGoogle Scholar
  73. 73.
    Nicholson JK, Holmes E, Wilson ID. Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol 2005; 3(5): 431–438PubMedCrossRefGoogle Scholar
  74. 74.
    Fujimura KE, Slusher NA, Cabana MD, Lynch SV. Role of the gut microbiota in defining human health. Expert Rev Anti Infect Ther 2010; 8(4): 435–454PubMedCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jingyi Lu
    • 1
  • Guoxiang Xie
    • 2
    • 3
  • Weiping Jia
    • 1
  • Wei Jia
    • 2
    • 3
    Email author
  1. 1.Shanghai Diabetes Institute; Department of Endocrinology and MetabolismShanghai Jiao Tong University Affiliated Sixth People’s Hospital; Shanghai Key Laboratory of Diabetes Mellitus; Shanghai Clinical Center for DiabetesShanghaiChina
  2. 2.Center for Translational MedicineShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghaiChina
  3. 3.Center for Translational Biomedical Research, University of North Carolina at GreensboroNorth Carolina Research CampusKannapolisUSA

Personalised recommendations