Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effects of stress on functional connectivity during verbal processing


Effects of stress on functional connectivity (FC) in specific language processing regions of the brain during verbal fluency tasks were explored. Roles of gender and serotonin transporter gene polymorphisms (5-HTTLPR), associated with stress susceptibility, were also examined to understand their effect. Forty-five healthy volunteers (Mean age: 19.6 ± 1.6 years; 28 females) participated. Functional magnetic resonance imaging was carried out while participants performed letter and category fluency tasks. These tasks were interposed with the Montreal Imaging Stress Test to induce stress or a no-stress control task. Buccal swabs collected were used to genotype for the presence of polymorphisms on the SLC6A4 gene known to contribute to atypical stress responses. Significant variations in strength of FC were noted between several ROIs, including left inferior frontal gyrus and left middle temporal gyrus. Overall, males showed regional increases in FC strength over long and short distances during task under stress. Additionally, variability in effects of stress on task performance was associated with effects of stress on FC. Results suggest that long distance FC may be strengthened to compensate for additional cognitive load of the stressor but that specific short distance functional connections may be strengthened in a gender specific manner. Additionally, FC may serve as a marker for effects of stress on performance. This is the first study exploring stress effects on language tasks with imaging markers. Future studies will need to explore stress susceptible populations and establish the role of FC as a marker, with implications for targeted therapeutic interventions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Admon, R., Leykin, D., Lubin, G., Engert, V., Andrews, J., Pruessner, J., & Hendler, T. (2013). Stress-induced reduction in hippocampal volume and connectivity with the ventromedial prefrontal cortex are related to maladaptive responses to stressful military service. Human Brain Mapping, 34(11), 2808–2816. https://doi.org/10.1002/hbm.22100.

  2. Aldwin, C., Sutton, K., Chiara, G., & Avron, S. (1996). Age differences in stress, coping, and appraisal: Findings from the normative aging study. Journal of Gerontology: Psychological Sciences, 5(4), 79–188. https://doi.org/10.1093/geronb/51B.4.P179.

  3. Alexander, J. K., Hillier, A., Smith, R. M., Tivarus, M. E., & Beversdorf, D. Q. (2007). Beta-adrenergic modulation of cognitive flexibility during stress. Journal of Cognitive Neuroscience, 19(3), 468–478. https://doi.org/10.1162/jocn.2007.19.3.468.

  4. Andrews, J., Ali, N., & Pruessner, J. C. (2013). Reflections on the interaction of psychogenic stress systems in humans: The stress coherence/compensation model. Psychoneuroendocrinology, 38(7), 947–961. https://doi.org/10.1016/j.psyneuen.2013.02.010.

  5. Andrews, J., & Pruessner, J. C. (2013). The combined propranolol/TSST paradigm—A new method for psychoneuroendocrinology. PLoS One, 8(2). https://doi.org/10.1371/journal.pone.0057567.

  6. Bartha, L., Brenneis, C., Schocke, M., Trinka, E., Koylu, B., Trieb, T., et al. (2003). Medial temporal lobe activation during semantic language processing: fMRI findings in healthy left- and right-handers. Cognitive Brain Research, 17, 339–346.

  7. Bebbington, P. E. (1998). Sex and depression. Psychological Medicine, 28(1), 1–8. https://doi.org/10.1017/S0033291797006065.

  8. Bell, E. C., Willson, M. C., Wilman, A. H., Dave, S., & Silverstone, P. H. (2006). Males and females differ in brain activation during cognitive tasks. NeuroImage, 30, 529–538. https://doi.org/10.1016/j.neuroimage.2005.09.049.

  9. Bengel, D., Murphy, D. L., Andrews, A. M., Wichems, C. H., Feltner, D., Heils, A., et al. (1998). Altered brain serotonin homeostasis and locomotor insensitivity to 3, 4-methylenedioxymethamphetamine (“Ecstasy”) in serotonin transporter-deficient mice. Molecular Pharmacology, 53(4), 649–655. https://doi.org/10.1124/MOL.53.4.649.

  10. Beversdorf, D. Q. (2019) Neuropsychopharmacological regulation of performance on creativity-related tasks. Current Opinion in Behavioral Sciences 27:55–63

  11. Beversdorf, D. Q., Carpenter, A. L., Alexander, J., Jenkins, N., Tilley, M. R., White, C., et al. (2018). Exploratory pilot study of influence of serotonin transporter genotype on the effect of psychosocial stress on cognitive performance. Cognitive and Behavioral Neurology, 31, 79-85.

  12. Beversdorf, D. Q., White, D. M., Chever, D. C., Hughes, J. D., & Bornstein, R. A. (2002). Central beta-adrenergic modulation of cognitive flexibility. NeuroReport, 13(18), 2505–2507. https://doi.org/10.1097/01.wnr.0000048923.00321.a7.

  13. Bromet, E., Andrade, L. H., Hwang, I., Sampson, N. A., Alonso, J., de Girolamo, G., et al. (2011). Cross-national epidemiology of DSM-IV major depressive episode. BMC Medicine, 9(1), 90. https://doi.org/10.1186/1741-7015-9-90.

  14. Campbell, H. L., Tivarus, M. E., Hillier, A., & Beversdorf, D. Q. (2008). Increased task difficulty results in greater impact of noradrenergic modulation of cognitive flexibility. Pharmacology Biochemistry and Behavior, 88, 222–229. https://doi.org/10.1016/j.pbb.2007.08.003.

  15. Caspi, A., Hariri, A. R., Holmes, A., Uher, R., & Moffitt, T. (2010). Genetic sensitivity to the environment: The case of the serotonin transporter gene and its implications for studying complex diseases and traits. American Journal of Psychiatry, 167, 509–527.

  16. Chamberlain, S. R., & Robbins, T. W. (2013). Noradrenergic modulation of cognition: Therapeutic implications. Journal of Psychopharmacology, 27(8), 694–718. https://doi.org/10.1177/0269881113480988.

  17. Cohen, S., Janicki-deverts, D., & Miller, G. E. (2007). Psychological stress and disease. JAMA, 298(14), 1685–1687.

  18. Costafreda, S. G., Fu, C. H. Y., Lee, L., Everitt, B., Brammer, M. J., & David, A. S. (2006). A systematic review and quantitative appraisal of fMRI studies of verbal fluency: Role of the left inferior frontal Gyrus. Human Brain Mapping, 27, 799–810. https://doi.org/10.1002/hbm.20221.

  19. Dedovic, K., Aguiar, C. D., & Pruessner, J. C. (2009). What stress does to your brain: A review of neuroimaging studies. La Revue Canadienne de Psychiatrie, 54(1), 6–15.

  20. Dedovic, K., Renwick, R., Mahani, N. K., Engert, V., Lupien, S. J., & Pruessner, J. C. (2005). The Montreal imaging stress task: Using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain. Journal of Psychiatry and Neuroscience, 30(5), 319–325.

  21. Devlin, J. T., Jamison, H. L., Gonnerman, L. M., & Matthews, P. M. (2006). The role of the posterior fusiform gyrus in reading. Journal of Cognitive Neuroscience, 18(6), 911–922. https://doi.org/10.1162/jocn.2006.18.6.911.The.

  22. Dimsdale, J. E. (2008). Psychological stress and cardiovascular disease. Journal of the American College of Cardiology, 51(13), 1237–1246. https://doi.org/10.1016/j.jacc.2007.12.024.

  23. Drabant, E. M., Ramel, W., Edge, M. D., Hyde, L. W., Kuo, J. R., Goldin, P. R., et al. (2012). Neural mechanisms underlying 5-HTTLPR-related sensitivity to acute stress. Am J Psychiatry, AJP in Adv, 1–9.

  24. Dukal, H., Frank, J., Lang, M., Treutlein, J., Gilles, M., Wolf, I. A. C., et al. (2015). New-born females show higher stress- and genotype-independent methylation of SLC6A4 than males. Borderline Personality Disorder and Emotion Dysregulation, 2(8), 4–11. https://doi.org/10.1186/s40479-015-0029-6.

  25. Duman, E. A., & Canli, T. (2015). Influence of life stress, 5-HTTLPR genotype, and SLC6A4 methylation on gene expression and stress response in healthy Caucasian males. Biology of Mood and Anxiety Disorders, 5(2), 1–14. https://doi.org/10.1186/s13587-015-0017-x.

  26. Easterbrook, J. A. (1959). The effect of emotion on cue utilization and the organization of behavior. Psychological Review, 66(3), 183–201. https://doi.org/10.1037/h0047707.

  27. Epel, E. S., Blackburn, E. H., Lin, J., Dhabhar, F. S., Adler, N. E., Morrow, J. D., & Cawthon, R. M. (2004). Accelerated telomere shortening in response to life stress. PNAS, 101(49), 17312–17315.

  28. Faigel, H. C. (1987). The effect of beta blockade on scholastic aptitude test scores in adolescents. Journal of Adolescent Health Care, 8(3), 304.

  29. Faigel, H. C. (1991). The effect of beta blockade on stress-induced cognitive dysfunction in adolescents. Clinical Pediatrics, 30(7), 441–445.

  30. Fan, Y., Herrera-Melendez, A. L., Pestke, K., Feeser, M., Aust, S., Otte, C., et al. (2014). Early life stress modulates amygdala-prefrontal functional connectivity: Implications for oxytocin effects. Human Brain Mapping, 35(10), 5328–5339. https://doi.org/10.1002/hbm.22553.

  31. Fan, Y., Pestke, K., Feeser, M., Aust, S., Pruessner, J. C., Böker, H., et al. (2015). Amygdala-hippocampal connectivity changes during acute psychosocial stress: Joint effect of early life stress and oxytocin. Neuropsychopharmacology, 40(12), 2736–2744. https://doi.org/10.1038/npp.2015.123.

  32. Fiez, J. (1997). Phonology, semantics and the tole of the left inferior prefrontal cortex. Human Brain Mapping, 5(March), 79–83.

  33. Flinker, A., Korzeniewska, A., Shestyuk, A. Y., Franaszczuk, P. J., & Dronkers, N. F. (2015). Redefining the role of Broca’s area in speech. PNAS, 112(9), 2871–2875. https://doi.org/10.1073/pnas.1414491112.

  34. Franklin, T. B., Saab, B. J., & Mansuy, I. M. (2012). Neural mechanisms of stress resilience and vulnerability. Neuron, 75(5), 747–761. https://doi.org/10.1016/j.neuron.2012.08.016.

  35. Friedman, L., Kenny, J. T., Wise, A. L., Wu, D., Stuve, T. A., Miller, D. A., Jesberger, J. A., & Lewin, J. S. (1998). Brain activation during silent word generation evaluated with functional MRI. Brain and Language, 64, 231–256.

  36. Gauthier, C. T., Duyme, M., Zanca, M., & Capron, C. (2009). Sex and performance level effects on brain activation during a verbal fluency task: A functional magnetic resonance imaging study. CORTEX, 45, 164–176. https://doi.org/10.1016/j.cortex.2007.09.006.

  37. Grimm, S., Pestke, K., Feeser, M., Aust, S., Weigand, A., Wang, J., et al. (2014). Early life stress modulates oxytocin effects on limbic system during acute psychosocial stress. Social Cognitive and Affective Neuroscience, 9(11), 1828–1835. https://doi.org/10.1093/scan/nsu020.

  38. Gyawali, S., Subaran, R., Weissman, M. M., Hershkowitz, D., McKenna, M. C., Talari, A., et al. (2010). Association of a polyadenylation polymorphism in the serotonin transporter and panic disorder. Biological Psychiatry, 67(4), 331–338. https://doi.org/10.1016/j.biopsych.2009.10.015.Association.

  39. Hagoort, P. (2014). Nodes and networks in the neural architecture for language: Broca’s region and beyond. Current Opinion in Neurobiology, 28, 136–141. https://doi.org/10.1016/j.conb.2014.07.013.

  40. Hariri, A. R., Mattay, V. S., Tessitore, A., Kolachana, B. S., Fera, F., Goldman, D., et al. (2002). Serotonin transporter genetic variation and the response of the human amygdala. Science, 297, 400–404.

  41. Hayashi, T., Mizuno-Matsumoto, Y., Okamoto, E., Kato, M., & Murata, T. (2012). An fMRI study of brain processing related to stress states. World Automation Congress, 1–6.

  42. Hecht, P. M., Hudson, M., Connors, S. L., Tilley, M. R., Liu, X., & Beversdorf, D. Q. (2016). Maternal serotonin transporter genotype affects risk for ASD with exposure to prenatal stress. Autism Research, 9, 1151–1160. https://doi.org/10.1002/aur.1629.

  43. Hecht, P. M., Will, M. J., Schachtman, T. R., Welby, L. M., & Beversdorf, D. Q. (2014). Beta-adrenergic antagonist effects on a novel cognitive flexibility task in rodents. Behavioural Brain Research, 260, 148–154. https://doi.org/10.1016/j.bbr.2013.11.041.

  44. Heilman, K. M., Nadeau, S. E., & Beversdorf, D. O. (2003). Creative innovation: Possible brain mechanisms. Neurocase, 9(5), 369–379. https://doi.org/10.1076/neur.9.5.369.16553.

  45. Hermans, E. J., van Marle, H. J. F., Ossewaarde, L., Henckens, M. J. A. G., Qin, S., Van Kesteren, M. T. R., et al. (2011). Stress-related noradrenergic activity prompts large-scale neural network reconfiguration. Science, 334(November), 1151–1154.

  46. Hernaus, D., Collip, D., Lataster, J., Ceccarini, J., Kenis, G., Booij, L., et al. (2013). COMT Val158Met genotype selectively alters prefrontal [18F]Fallypride displacement and subjective feelings of stress in response to a psychosocial stress challenge. PLoS One, 8(6). https://doi.org/10.1371/journal.pone.0065662.

  47. Hillier, A., Alexander, J. K., & Beversdorf, D. Q. (2006). The effect of auditory stressors on cognitive flexibility. Neurocase, 12, 228–231. https://doi.org/10.1080/13554790600878887.

  48. Hirshorn, E. A., & Thompson-schill, S. L. (2006). Role of the left inferior frontal gyrus in covert word retrieval: Neural correlates of switching during verbal fluency. Neuropsychologia, 44, 2547–2557. https://doi.org/10.1016/j.neuropsychologia.2006.03.035.

  49. Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17(2), 825–841. https://doi.org/10.1016/S1053-8119(02)91132-8.

  50. Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine registration of brain images. Medical Image Analysis, 5(2), 143–156. https://doi.org/10.1016/S1361-8415(01)00036-6.

  51. Jonides, J., Schumacher, E. H., Smith, E. E., Koeppe, R. A., Awh, E., Reuter-Lorenz, P. A., et al. (1998). The role of parietal cortex in verbal working memory. Journal of Neuroscience.

  52. Just, M. A. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 127(8):1811–1821

  53. Karg, K., Burmeister, M., Shedden, K., & Sen, S. (2011). The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited. Archives of General Psychiatry, 68(5), 444–454. https://doi.org/10.1001/archgenpsychiatry.2010.189.

  54. Kelley, B. J., Yeager, K. R., Pepper, T. H., Bornstein, R. A., & Beversdorf, D. Q. (2007). The effect of propranolol on cognitive flexibility and memory in acute cocaine withdrawal. Neurocase, 13, 320–327. https://doi.org/10.1080/13554790701846148.

  55. Kemeny, M. E. (2003). The psychobiology of stress. Current Directions in Psychological Science, 12(4), 124–129.

  56. Kenna, G. A., Roder-hanna, N., Leggio, L., Zywiak, W. H., Clifford, J., Edwards, S., et al. (2012). Association of the 5-HTT gene-linked promoter region (5-HTTLPR ) polymorphism with psychiatric disorders: review of psychopathology and pharmacotherapy. Pharmacogenomics and Personalized Medicine, 5, 19–35.

  57. Kessler, R. C. (2003). Epidemiology of women and depression. Journal of Affective Disorders, 74(1), 5–13. https://doi.org/10.1016/S0165-0327(02)00426-3.

  58. Kessler, R. C., McGonagle, K. A., Swartz, M., Blazer, D. G., & Nelson, C. B. (1993). Sex and depression in the National Comorbidity Survey I: Lifetime prevalence, chronicity and recurrence. Journal of Affective Disorders, 29(2–3), 85–96. https://doi.org/10.1016/0165-0327(93)90026-G.

  59. Khalili-Mahani, N., Dedovic, K., Engert, V., Pruessner, M., & Pruessner, J. C. (2010). Hippocampal activation during a cognitive task is associated with subsequent neuroendocrine and cognitive responses to psychological stress. Hippocampus, 20(2), 323–334. https://doi.org/10.1002/hipo.20623.

  60. Kirschbaum, C., Pirke, K.-M., & Hellhammer, D. (1993). The ‘Trier social stress test’—A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28, 76–81.

  61. Klein, L. C., & Corwin, E. J. (2002). Seeing the unexpected: How sex differences in stress responses may provide a new perspective on the manifestation of psychiatric disorders. Current Psychiatry Reports, 4, 441–448.

  62. Kogler, L., Seidel, E. M., Metzler, H., Thaler, H., Boubela, R. N., Pruessner, J. C., et al. (2017). Impact of self-esteem and sex on stress reactions. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/s41598-017-17485-w.

  63. Koob, G. F., Cole, B. J., Swerdlow, N. R., Le Moal, M., & Britton, K. T. (1990). Stress, performance, and arousal: Focus on CRF. NIDA Research Monograph, 97, 163–176.

  64. Laverdure, B., & Boulenger, J.-P. (1991). Medications beta-bloquantes et anxiete Un interest therapeutique certain. L’Encephale, XVII, 481–492.

  65. Lesch, K.-P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., et al. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science (New York, N.Y.), 274(5292), 1527–1531 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8929413%0Ahttp://www.jstor.org/stable/289226.

  66. Liston, C., Mcewen, B. S., & Casey, B. J. (2009). Psychosocial stress reversibly disrupts prefrontal processing and attentional control. PNAS, 106(3), 912–917. https://doi.org/10.1073/pnas.0807041106.

  67. Lucassen, P. J., Pruessner, J., Sousa, N., Almeida, O. F. X., Marie, A., Rajkowska, G., et al. (2014). Neuropathology of stress. Acta Neuropathologica, 127, 109–135. https://doi.org/10.1007/s00401-013-1223-5.

  68. Matud, M. P. (2004). Gender differences in stress and coping styles. Personality and Individual Differences, 37, 1401–1415. https://doi.org/10.1016/j.paid.2004.01.010.

  69. McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: Central role of theBrain. Physiological Reviews, 87, 873–904. https://doi.org/10.1152/physrev.00041.2006.

  70. McEwen, B. S., & Saplosky, R. M. (1995). Stress and cognitive function. Current Opinion in Neurobiology, 5, 205–216.

  71. Mcguffin, P., Alsabban, S., & Uher, R. (2011). The truth about genetic variation in the serotonin transporter gene and response to stress and medication. The British Journal of Psychiatry, 198, 424–427. https://doi.org/10.1192/bjp.bp.110.085225.

  72. Murphy, D. L., & Moya, P. R. (2011). Human serotonin transporter gene (SLC6A4) variants: Their contributions to understanding Pharmacogenomic and other functional G x G and G x E differences in health and disease. Current Opinion in Pharmacology, 11(1), 3–10. https://doi.org/10.1016/j.coph.2011.02.008.Human.

  73. Narayanan, A., White, C. A., Saklayen, S., Scaduto, M. J., Carpenter, A. L., Abduljalil, A., & …Beversdorf, D. Q. (2010). Effect of propranolol on functional connectivity in autism spectrum disorder-a pilot study. Brain Imaging and Behavior, 4(2), 189–197. https://doi.org/10.1007/s11682-010-9098-8.

  74. Neubauer, A. C., & Fink, A. (2009). Intelligence and neural efficiency. Neuroscience and Biobehavioral Reviews, 33(7), 1004–1023. https://doi.org/10.1016/j.neubiorev.2009.04.001.

  75. Ossewaarde, L., Qin, S., Van Marle, H. J. F., van Wingen, G. A., Fernández, G., & Hermans, E. J. (2011). Stress-induced reduction in reward-related prefrontal cortex function. NeuroImage, 55(1), 345–352. https://doi.org/10.1016/j.neuroimage.2010.11.068.

  76. Pruessner, J. C., Dedovic, K., Khalili-mahani, N., Engert, V., Pruessner, M., Buss, C., et al. (2008). Deactivation of the limbic system during acute psychosocial stress: Evidence from positron emission tomography and functional magnetic resonance imaging studies. Biol Psychiatry, 63, 234–240. https://doi.org/10.1016/j.biopsych.2007.04.041.

  77. Qin, S., Cousijn, H., Rijpkema, M., Luo, J., Franke, B., Hermans, E. J., & Fernández, G. (2012a). The effect of moderate acute psychological stress on working memory-related neural activity is modulated by a genetic variation in catecholaminergic function in humans. Frontiers in Integrative Neuroscience, 6(May), 1–12. https://doi.org/10.3389/fnint.2012.00016.

  78. Qin, S., Hermans, E. J., van Marle, H. J. F., & Fernandez, G. (2012b). Understanding low reliability of memories for neutral information encoded under stress: Alterations in memory-related activation in the Hippocampus and midbrain. Journal of Neuroscience, 32(12), 4032–4041. https://doi.org/10.1523/JNEUROSCI.3101-11.2012.

  79. Renner, K. H., & Beversdorf, D. Q. (2010). Effects of naturalistic stressors on cognitive flexibility and working memory task performance. Neurocase, 16(4), 293–300. https://doi.org/10.1080/13554790903463601.

  80. Risch, N., Herrell, R., Lehner, T., Liang, K.-Y., Eaves, L., Hoh, J., Griem, A., Kovacs, M., Ott, J., & Merikangas, K. R. (2009). Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression. JAMA, 301(23), 2462–2471.

  81. Rodríguez-Aranda, C., & Martinussen, M. (2006). Age-related differences in performance of phonemic verbal fluency measured by controlled Oral word association task (COWAT): A meta-analytic study. Developmental Neuropsychology, 30(2), 697–717. https://doi.org/10.1207/s15326942dn3002_3.

  82. Rudolph, K. D., & Hammen, C. (1999). Age and gender as determinants of stress exposure, generation, and reactions in youngsters: A transactional perspective. Published by: Wiley on behalf of the Society for Research in Child Development. Child Development, 70(3), 660–677.

  83. Sandi, C. (2013). Stress and cognition. WIREs Cogn Science, 4, 245–261. https://doi.org/10.1002/wcs.1222.

  84. Sapolsky, R. M., Krey, L. C., & McEwen, B. S. (1986). The neuroendocrinology of stress and aging: The glucocorticoid Cascade hypothesis. Endocrine Reviews, 7(3), 284–301. https://doi.org/10.1210/edrv-7-3-284.

  85. Schlosser, R., Hutchinson, M., Joseffer, S., Rusinek, H., Saarimaki, A., Stevenson, J., Dewey, S. L., & Brodie, J. D. (1998). Functional magnetic resonance imaging of human brain activity in a verbal fluency task. Journal of Neurology, Neurosurgery, and Psychiatry, 64, 492–498.

  86. Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155. https://doi.org/10.1002/hbm.10062.

  87. Strauss, E., Sherman, E. M., & Spreen, O. (1998). A compendium of neuropsychological tests: Administration, norms, and commentary. Oxford: Oxford University Press.

  88. Tivarus, M. E., Hillier, A., Schmalbrock, P., & Beversdorf, D. Q. (2008). Functional connectivity in an fMRI study of semantic and phonological processes and the effect of L -Dopa. Brain and Language, 104(1), 42–50. https://doi.org/10.1016/j.bandl.2007.02.007.

  89. Tomasi, D., & Volkow, N. D. (2012). Resting functional connectivity of language networks: Characterization and reproducibility. Molecular Psychiatry, 17(8), 841–854. https://doi.org/10.1038/mp.2011.177.

  90. Uttl, B. (2002). North American adult Reading test: Age norms, reliability, and validity. Journal of Clinical and Experimental Neuropsychology, 24(8), 1123–1137.

  91. van der Meer, D., Hartman, C. A., Pruim, R. H. R., Mennes, M., Heslenfeld, D., Oosterlaan, J., et al. (2016). The interaction between 5-HTTLPR and stress exposure influences connectivity of the executive control and default mode brain networks. Brain Imaging and Behavior, 11, 1–11. https://doi.org/10.1007/s11682-016-9633-3.

  92. van Marle, H. J. F., Hermans, E. J., Qin, S., & Fernández, G. (2010). Enhanced resting-state connectivity of amygdala in the immediate aftermath of acute psychological stress. NeuroImage, 53(1), 348–354. https://doi.org/10.1016/j.neuroimage.2010.05.070.

  93. Volman, I., Verhagen, L., den Ouden, H. E. M., Fernandez, G., Rijpkema, M., Franke, B., et al. (2013). Reduced serotonin transporter availability decreases prefrontal control of the amygdala. Journal of Neuroscience, 33(21), 8974–8979. https://doi.org/10.1523/JNEUROSCI.5518-12.2013.

  94. Weiss, E. M., Hofer, A., Golaszewski, S., Siedentopf, C., Brinkhoff, C., Kremser, C., Felber, S., & Fleischhacker, W. W. (2004). Brain activation patterns during a verbal fluency test—A functional MRI study in healthy volunteers and patients with schizophrenia. Schizophrenia Research, 70, 287–291. https://doi.org/10.1016/j.schres.2004.01.010.

  95. Weissman, M. M., & Klerman, G. L. (1977). Sex differences and the epidemiology of depression. Archives of General Psychiatry, 34(1), 98–111. https://doi.org/10.1001/archpsyc.1977.01770130100011.

  96. Worsley, K. J. (2001). Statistical analysis of activation images. In Functional MRI: An introduction to methods. Oxford University Press (p. Chapter 14).

Download references


The authors would like to thank Katarina Devovic and Jens C. Pruessner for their generous donation of the MIST software. We would also like to thank Nick Hopkins, MD, Alanna Bauer, Katie Huddlestonsmith, and Emily Hover for their contributions to the project.

Funding and disclosures

This research is supported by a grant from the University of Missouri Research Board and the University of Missouri Mission Enhancement Fund.

Author information

Correspondence to David Q. Beversdorf.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent statement

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nair, N., Hegarty, J.P., Ferguson, B.J. et al. Effects of stress on functional connectivity during verbal processing. Brain Imaging and Behavior (2019). https://doi.org/10.1007/s11682-019-00221-5

Download citation


  • Stress
  • Verbal fluency
  • fMRI
  • Functional connectivity
  • Serotonin transporter
  • Gender