Altered brain structures in the dorsal and ventral language pathways in individuals with and without developmental language disorder (DLD)

  • Joanna C. LeeEmail author
  • Anthony Steven Dick
  • J. Bruce Tomblin
Original Research


Developmental Language Disorder (DLD) is a neurodevelopmental disorder characterized by difficulty learning and using language, and this difficulty cannot be attributed to other developmental conditions. The aim of the current study was to examine structural differences in dorsal and ventral language pathways between adolescents and young adults with and without DLD (age range: 14–27 years) using anatomical magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). Results showed age-related structural brain differences in both dorsal and ventral pathways in individuals with DLD. These findings provide evidence for neuroanatomical correlates of persistent language deficits in adolescents/young adults with DLD, and further suggest that this brain-language relationship in DLD is better characterized by taking account the dynamic course of the disorder along development.


Developmental language disorder Dorsal pathway Ventral pathway Structural brain imaging 



We would like to thank the staff in the Child Language Research Center and the MACLab at the University of Iowa for their help with subject recruitment and data collection, as well as Eric Axelson in the Nopoulos Lab for his assistance in image preprocessing and processing. We also want to express our gratitude to our participants and their parents for agreeing to take part in this study.

Compliance with ethical standards

This work was supported by the National Institute on Deafness and Other Communication Disorders (NIDCD) awarded to Dr. Tomblin [Grant R21DC013733]. All authors declare that they have no conflict of interest. All procedures performed in the study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.


  1. Alexander, A. L., Lee, J. E., Lazar, M., & Field, A. S. (2007). Diffusion tensor imaging of the brain. Neurotherapeutics, 4, 316–329.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Anthony, J. L., Davis, C., Williams, J. M., & Anthony, T. I. (2014). Preschoolers’ oral language ability: a multilevel examination of dimensionality. Learning and Individual Differences, 35, 56–61.CrossRefGoogle Scholar
  3. Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8(4), 170–177.PubMedCrossRefGoogle Scholar
  4. Asato, M. R., Terwilliger, R., Woo, J., & Luna, B. (2010). White matter development in adolescence: a DTI study. Cerebral Cortex, 20(9), 2122–2131.PubMedCrossRefGoogle Scholar
  5. Badcock, N. A., Bishop, D. V. M., Hardiman, M. J., Barry, J. G., & Watkins, K. E. (2012). Co-localisation of abnormal brain structure and function in specific language impairment. Brain and Language, 120(3), 310–320.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bailey, P., & Snowling, M. (2002). Auditory processing and the development of language and literacy. British Medical Bulletin, 63(1), 135–146.PubMedCrossRefGoogle Scholar
  7. Bajada, C. J., Lambon Ralph, M. A., & Cloutman, L. L. (2015). Transport for language south of the Sylvian fissure: the routes and history of the main tracts and stations in the ventral language network. Cortex, 69, 141–151.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Barnea-Goraly, N., Menon, V., Eckert, M., Tamm, L., Bammer, R., Karchemskiy, A., et al. (2005). White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study. Cerebral Cortex, 15(12), 1848–1854.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Benasich, A. A., Thomas, J. J., Choudhury, N., & Leppanen, P. H. T. (2002). The importance of rapid auditory processing abilities to early language development: evidence from converging methodologies. Developmental Psychobiology, 40(3), 278–292.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57(1), 289–300.Google Scholar
  11. Bishop, D. V. M. (2000). How does the brain learn language? Insights from the study of children with and without language impairment. Developmental Medicine and Child Neurology, 42, 133–142.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bishop, D. V. M. (2013). Cerebral asymmetry and language development: cause, correlate or consequence? Science, 340(6138), 1230531.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bishop, D. V. M., & McArthur, G. M. (2005). Individual differences in auditory processing in specific language impairment: a follow-up study using event-related potentials and behavioral thresholds. Cortex, 41(3), 327–341.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bishop, D. V. M., Carlyon, R. P., Deeks, J. M., & Bishop, S. J. (1999). Auditory temporal processing impairment: neither necessary nor sufficient for causing language impairment in children. Journal of Speech, Language, and Hearing Research, 42(6), 1295–1310.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bornstein, M. H., Hahn, C. S., Putnick, D. L., & Suwalsky, J. T. D. (2014). Stability of core language skill from early childhood to adolescence: a latent variable approach. Child Development, 85(4), 1346–1356.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Brauer, J., Anwander, A., & Friederici, A. D. (2011). Neuroanatomical prerequisites for language functions in the maturing brain. Cerebral Cortex, 21, 459–466.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Brauer, J., Anwander, A., Perani, D., & Friederici, A. D. (2013). Dorsal and ventral pathways in language development. Brain and Language, 127(2), 289–295.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Broce, I., Bernal, B., Altman, N., Tremblay, P., & Dick, A. S. (2015). Fiber tracking of the frontal aslant tract and subcomponents of the arcuate fasciculus in 5–8-year-olds: relation to speech and language function. Brain and Language, 149, 66–76.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Catani, M., Jones, D. K., & Ffytche, D. H. (2005). Perisylvian language networks of the human brain. Annual Neurology, 57(1), 8–16.CrossRefGoogle Scholar
  20. Cheng, P., Magnotta, V. A., Wu, D., Nopoulos, P., Moser, D. J., Paulsen, J., et al. (2006). Evaluation of the GTRACT diffusion tensor tractography algorithm: a validation and reliability study. NeuroImage, 31(3), 1075–1085.PubMedCrossRefGoogle Scholar
  21. Clark, M. M., & Plante, E. (1998). Morphology of the inferior frontal gyrus in developmentally language-disordered adults. Brain and Language, 61(2), 288–303.PubMedCrossRefGoogle Scholar
  22. Cloutman, L. L. (2013). Interaction between dorsal and ventral processing streams: where, when, and how? Brain and Language, 127(2), 251–263.PubMedCrossRefGoogle Scholar
  23. Coady, J. A., Kluender, K. R., & Evans, J. L. (2005). Categorical perception of speech by children with specific language impairments. Journal of Speech, Language, and Hearing Research, 48(4), 944–959.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cohen, M., Campbell, R., & Yaghmai, F. (1989). Neuropathological abnormalities in developmental dysphasia. Annals of Neurology, 25(6), 567–570.PubMedCrossRefGoogle Scholar
  25. Corriveau, K., Pasquini, E., & Goswami, U. (2007). Basic auditory processing skills and specific language impairment: a new look at an old hypothesis. Journal of Speech, Language, and Hearing Research, 50, 647–666.PubMedCrossRefGoogle Scholar
  26. Cristia, A., Seidl, A., Junge, C., Soderstrom, M., & Hagoort, P. (2014). Predicting individual variation in language from infant speech perception measures. Child Development, 85(4), 1330–1345.PubMedCrossRefGoogle Scholar
  27. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage, 9(2), 179–194.PubMedCrossRefGoogle Scholar
  28. De Fossé, L., Hodge, S. M., Makris, N., Kennedy, D. N., Caviness, V. S. Jr., McGrath, L., … Harris, G. J. (2004). Language-association cortex asymmetry in autism and specific language impairment. Annals of Neurology, 56(6), 757–766.PubMedCrossRefPubMedCentralGoogle Scholar
  29. De Guibert, C., Maumet, C., Jannin, P., Ferre, J.-C., Treguier, C., Barillot, C., et al. (2011). Abnormal functional lateralization and activity of language brain areas in typical specific language impairment. Brain, 134(10), 3044–3058.PubMedPubMedCentralCrossRefGoogle Scholar
  30. De Renzi, E., & Faglioni, P. (1978). Normative data and screening power of a shortened version of the Token Test. Cortex, 14, 41–49.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Dick, A. S., Bernal, B., & Tremblay, P. (2014). The language connectome: new pathways, new concepts. Neuroscientist, 20(5), 453–467.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Dollaghan, C. A. (2011). Taxometric analyses of specific language impairment in 6-year-old children. Journal of Speech, Language, and Hearing Research, 54, 1361–1371.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Duffau, H., Herbet, G., & Moritz-Gasser, S. (2013). Toward a pluri-component, multimodal, and dynamic organization of the ventral semantic stream in humans: lessons from stimulation mapping in awake patients. Frontiers in Systems Neuroscience, 7(44), 1–4.Google Scholar
  34. Dunn, L. M., & Dunn, D. M. (2007). Peabody picture vocabulary test-fourth edition (PPVT-4). MN: Pearson.Google Scholar
  35. Evans, J. (2001). An emergent account of language impairments in children with SLI: implications for assessment and intervention. Journal of Communication Disorders, 34(1–2), 39–54.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Fischl, B., Sereno, M. I., Tootell, R. B. H., & Dale, A. M. (1999). High-resolution inter-subject averaging and a coordinate system for the cortical surface. Human Brain Mapping, 8, 272–284.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Fischl, B., Liu, A., & Dale, A. M. (2001). Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Transactions on Medical Image, 20(1), 70–80.CrossRefGoogle Scholar
  38. Friederici, A. D. (2009). Pathways to language: Fiber tracts in the human brain. Trends in Cognitive Sciences, 13(4), 175–181.PubMedCrossRefGoogle Scholar
  39. Friederici, A. D., & Gierhan, S. (2013). The language network. Current Opinion in Neurobiology, 23, 250–254.PubMedCrossRefGoogle Scholar
  40. Gauger, L. M., Lombardino, I. J., & Leonard, C. M. (1997). Brain morphology in children with specific language impairment. Journal of Speech, Language, and Hearing Research, 40, 1272–1284.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Glasser, M. F., & Rilling, J. K. (2008). DTI Tractography of the human brain’s language pathways. Cerebral Cortex, 18(11), 2471–2482.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Hammill, D. D., Brown, V. L., Larsen, S. C., & Wiederholt, J. L. (2007). Test of adolescent and adult language, fourth edition (TOAL-4). Austin: Pro-Ed.Google Scholar
  43. Harris, G., Andreasen, N. C., Cizadlo, T., Bailey, J. M., Bockholt, H. J., Magnotta, V. A., & Arndt, S. (1999). Improving tissue classification in MRI: a three-dimensional multispectral discriminant analysis method with automated training class selection. Journal of Computer Assisted Tomography, 23(1), 144–154.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Helzer, J. R., Champlin, C. A., & Gillam, R. B. (1996). Auditory temporal resolution in specifically language-impaired and age-matched children. Perceptual and Motor Skills, 83(3), 1171–1181.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Henry, L. A., Messer, D. J., & Nash, G. (2012). Executive functioning in children with specific language impairment. Journal of Child Psychology and Psychiatry, 53(1), 37–45.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Hepper, P. (2015). Behavior during the prenatal period: adaptive for development and survival. Child Development Perspectives, 9(1), 38–43.CrossRefGoogle Scholar
  47. Herbert, M. R., Ziegler, D. A., Makris, N., Bakardjiev, A., Hodgson, J., Adrien, K. T., … Caviness Jr., V. S. (2003). Larger brain and white matter volumes in children with developmental language disorder. Developmental Science, 6(4), F11-F22.CrossRefGoogle Scholar
  48. Herbert, M. R., Ziegler, D. A., Makris, N., Filipek, P. A., Kemper, T. L., Normandin, J. J., … Caviness, V. S. (2004). Localization of white matter volume increase in autism and developmental language disorder. Annals of Neurology, 55(4), 530–540.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Herbert, M.R., Ziegler, D. A., Deutsch, C. K., O’Brien, L. M., Kennedy, D. N., Filipek, P. A., … Caviness, V. S. (2005). Brain asymmetries in autism and developmental language disorder: a nested whole-brain analysis. Brain, 128, 213–226.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition, 92(1–2), 67–99.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Hofer, S., & Frahm, J. (2006). Topography of the human corpus callosum revisited--comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. NeuroImage, 32(3), 989–994.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hua, K., Zhang, J., Wakana, S., Jiang, H., Li, X., Reich, D. S., … Mori, S. (2008). Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. NeuroImage, 39(1), 336–347.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Hugdahl, K., Gundersen, H., Brekke, C., Thomsen, T., Rimol, L. M., Ersland, L., & Niemi, J. (2004). FMRI brain activation in a Finnish family with specific language impairment compared with a normal control group. Journal of Speech, Language, and Hearing Research, 47, 162–172.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Huppi, P. S., & Dubois, J. (2006). Diffusion tensor imaging of brain development. Seminars in Fetal and Neonatal Medicine, 11(6), 489–497.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Jancke, L., Siegenthaler, T., Preis, S., & Steinmetz, H. (2007). Decreased white-matter density in a left-sided fronto-temporal network in children with developmental language disorder: evidence for anatomical anomalies in a motor-language network. Brain and Language, 102, 91–98.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Jernigan, T. L., Hesselink, J. R., Sowell, E., & Tallal, P. A. (1991). Cerebral structure on magnetic resonance imaging in language- and learning-impaired children. Archives of Neurology, 48, 539–545.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Kamali, A., Flanders, A. E., Brody, J., Hunter, J. V., & Hasan, K. M. (2014). Tracing superior longitudinal fasciculus connectivity in the human brain using high resolution diffusion tensor tractography. Brain Structure and Function, 219(1), 269–281.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Karmiloff-Smith, A. (1998). Development itself is the key to understanding developmental disorders. Trends in Cognitive Sciences, 2(10), 389–398.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Kochunov, P., Williamson, D. E., Lancaster, J., Fox, P., Cornell, J., Blangero, J., & Glahn, D. C. (2012). Fractional anisotropy of water diffusion in cerebral white matter across the lifespan. Neurobiology of Aging, 33(1), 9–20.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Krishnan, S., Watkins, K. E., & Bishop, D. V. M. (2016). Neurobiological basis of language learning difficulties. Trends in Cognitive Sciences, 20(9), 701–714.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kurth, F., Luders, E., Pigdon, L., Conti-Ramsden, G., Reilly, S., & Morgan, A. T. (2018). Altered gray matter volumes in language-associated regions in children with developmental language disorder and speech sound disorder. Developmental Psychobiology, 60(7), 814–824.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Kwok, E. Y. L., Joanisse, M. F., Archibald, L. M. D., & Cardy, J. O. (2018). Immature auditory evoked potentials in children with moderate-severe developmental language disorder. Journal of Speech, Language, and Hearing Research, 61, 1718–1730.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Lambon Ralph, M. A., Pobric, G., & Jefferies, E. (2009). Conceptual knowledge is underpinned by the temporal pole bilaterally: convergent evidence from rTMS. Cerebral Cortex, 19(4), 832–838.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Language and Reading Research Consortium. (2015). The dimensionality of language asbility in young children. Child Development, 86(6), 1948–1965.CrossRefGoogle Scholar
  65. Lebel, C., Gee, M., Camicioli, R., Wieler, M., Martin, W., & Beaulieu, C. (2012). Diffusion tensor imaging of white matter tract evolution over the lifespan. NeuroImage, 60(1), 340–352.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Lee, J. C., Nopoulos, P. C., & Tomblin, J. B. (2013). Abnormal subcortical components of the corticostriatal system in young adults with DLI: a combined structural MRI and DTI study. Neuropsychologia, 51(11), 2154–2161.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Leonard, L. B. (1998). Children with specific language impairment. Cambridge: MIT Press.Google Scholar
  68. Leonard, L. B. (2014). Children with specific language impairment and their contribution to the study of language development. Journal of Child Language, 41(S1), 38–47.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Leonard, C. M., Lombardino, L. J., Walsh, K., Eckert, M. A., Mockler, J. L., Rowe, L. A., et al. (2002). Anatomical risk factors that distinguish dyslexia from SLI predict reading skill in normal children. Journal of Communication Disorders, 35, 501–531.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Leroy, F., Glasel, H., Dubois, J., Hertz-Pannier, L., Thirlon, B., Mangin, J., & Dehaene-Lambetz, G. (2011). Early maturation of the linguistic dorsal pathway in human infants. Journal of Neuroscience, 31(4), 1500–1506.PubMedCrossRefGoogle Scholar
  71. Lieberman, P. (2002). On the nature and evolution of the neural bases of human language. Yearbook of Physical Anthropology, 45, 36–62.CrossRefGoogle Scholar
  72. Liégeois, F. J., Turner, S. J., Mayes, A., Bonthrone, A. F., Boys, A., Smith, L., et al. (2019). Dorsal language stream anomalies in an inherited speech disorder. Brain, 142(4), 966–977.PubMedCrossRefGoogle Scholar
  73. Liu, Z., Wang, Y., Gerig, G., Gouttard, S., Tao, R., Fletcher, T., & Styner, M. (2010). Quality control of diffusion weighted images. Proceedings of SPIE, 11, 7628.Google Scholar
  74. Magnotta, V. A., Heckel, D., Andreasen, N. C., Cizadlo, T., Corson, P. W., Ehrhardt, J. C., et al. (1999). Measurement of brain structures with artificial neural networks: two- and three-dimensional applications. Radiology, 211(3), 781–790.PubMedCrossRefGoogle Scholar
  75. Magnotta, V. A., Harris, G., Andreasen, N. C., O’Leary, D. S., Yuh, W. T., & Heckel, D. (2002). Structural MR image processing using the BRAINS2 toolbox. Computerized Medical Imaging and Graphics, 26(4), 251–264.PubMedCrossRefGoogle Scholar
  76. Mareschal, D., Johnson, M. H., Sirios, S., Spratling, M., Thomas, M. S. C., & Westermann, G. (2007). Neuroconstructivism. Vol. I. Heow the brain constructs cognition. Oxford, England: Oxford University Press.Google Scholar
  77. Markanday, S., Brennan, S. L., Gould, H., & Pasco, J. A. (2013). Sex-differences in reasons for non-participation at recruitment: Geelong Osteoporosis Study. BMC Research Notes, 6(104), 1–7.Google Scholar
  78. Martino, J., De Witt Hamer, P. C., Berger, M. S., Lawton, M. T., Arnold, C. M., de Lucas, E. M., & Duffau, H. (2013). Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: a fiber dissection and DTI tractography study. Brain Structure and Function, 218(1), 105–121.PubMedCrossRefPubMedCentralGoogle Scholar
  79. McDonald, C. R., Ahmadi, M. E., Hagler, D. J., Tecoma, E. S., Iragui, V. J., Gharapetian, L., … Halgren, E. (2008). Diffusion tensor imaging correlates of memory and language impairments in temporal lobe epilepsy. Neurology, 71, 1869–1876.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Merzenich, M. M., Jenkins, W. M., Johnston, P., Schreiner, C., Miller, S. L., & Tallal, P. (1996). Temporal processing deficits of language-learning impaired children ameliorated by training. Science, 271(5245), 77–81.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Mesulam, M. (1990). Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Annals of Neurology, 28(5), 597–613.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Moon, C., Lagercrantz, H., & Huhl, P. K. (2013). Language experienced in utero affects vowel perception after birth: a two-country study. Acta Paediatrica, 102(2), 156–160.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Morgan, A. T., Su, M., Reilly, S., Conti-Ramsden, G., Connelly, A., & Liégeois, F. J. (2018). A brain marker for developmental speech disorders. The Journal of Pediatrics, 198, 234–239.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Morice, R., & McNicol, D. (1985). The comprehension and production of complex syntax in schizophrenia. Cortex, 21, 567–580.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Morosan, P., Rademacher, J., Schleicher, A., Amunts, K., Schormann, T., & Zilles, K. (2001). Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. NeuroImage, 13(4), 685–701.CrossRefGoogle Scholar
  86. Nation, K. (2014). Lexical learning and lexical processing in children with developmental language impairments. Philosophical Transactions of the Royal Society B, 369, 20120387.CrossRefGoogle Scholar
  87. Norbury, C. F., Tomblin, J. B., & Bishop, D. V. (Eds.). (2008). Understanding developmental language disorders. Hove and New York: Psychology Press.Google Scholar
  88. Norbury, C.F., Gooch, D., Wray, C., Baird, G., Charmand, T., Simonoff, E., … & Andrew, P. (2016). The impact of NVIQ on prevalence and clinical presentation of language disorder: evidence from a population study. Journal of Child Psychology and Psychiatry, 11, 1247–1257.Google Scholar
  89. Norrelgen, F., Lacerda, F., & Forssberg, H. (2002). Temporal resolution of auditory perception and verbal working memory in 15 children with language impairment. Journal of Learning Disabilities, 35(6), 539–545.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Oguz, I., Zhang, H., Rumple, A., & Sonka, M. (2014). RATS: Rapid automatic tissue segmentation in rodent brain MRI. Journal of Neuroscience Methods, 221, 175–182.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Ortibus, E., Verhoeven, J., Sunaert, S., Casteels, I., de Cock, P., & Lagae, L. (2012). Integrity of the inferior longitudinal fasciculus and impaired object recognition in children: a diffusion tensor imaging study. Developmental Medicine and Child Neurology, 54(1), 38–43.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Partanen, E., Kujala, T., Naatanen, R., Liitola, A., Sambeth, A., & Huotilainen, M. (2013). Learning-induced neural plasticity of speech processing before birth. PNAS, 110(37), 15145–15150.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Perani, D., Saccuman, M. C., Scifo, P., Anwander, A., Spada, D., Baldoli, C., et al. (2011). Neural language networks at birth. PNAS, 108(38), 16056–16061.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Plante, E., Swisher, L., Vance, R., & Rapcsak, S. (1991). MRI findings in boys with specific language impairment. Brain and Language, 41, 52–66.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Poll, G. H. (2011). Increasing the odds: applying emergentist theory in language intervention. Language, Speech, and Hearing Services in Schools, 42(4), 580–591. Scholar
  96. Preis, S., Steinmetz, H., Knorr, U., & Jancke, L. (2000). Corpus callosum size in children with developmental language disorder. Brain Research Cognitive Brain Research, 10(1–2), 37–44.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Qiu, A., Mori, S., & Miller, M. I. (2015). Diffusion tensor imaging for understanding brain development in early life. Annual Review of Psychology, 66, 853–576.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Roberts, T. P. L., Heiken, K., Zarnow, D., Dell, J., Nagae, L., Blaskey, L., … Edgar, J. C. (2014). Left hemisphere diffusivity of the arcuate fasciculus: influences of autism spectrum disorder and language impairment. American Journal of Neuroradiology, 35(3), 587–592.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Rolheiser, T., Stamatakis, E. A., & Tyler, L. K. (2011). Dynamic processing in the human language system: synergy between the arcuate fascicle and extreme capsule. The Journal of Neuroscience, 31(47), 16949–16957.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Saur, D., Kreher, B. W., Schnell, S., Kummerer, D., Kellmeyer, P., Vry, M., et al. (2008). Ventral and dorsal pathways for language. PNAS, 105(46), 18035–18040.PubMedCrossRefGoogle Scholar
  101. Semel, E. M., Wiig, E. H., & Secord, W. (2003). Clinical evaluation of language fundamentals, fourth edition (CELF-4). San Antonio: The Psychological Corporation.Google Scholar
  102. Shinoura, N., Suzuki, Y., Tsukada, M., Katsuki, S., Yamada, R., Tabei, Y., et al. (2007). Impairment of inferior longitudinal fasciculus plays a role in visual memory disturbance. Neurocase, 13(2), 127–139.PubMedCrossRefGoogle Scholar
  103. Simmonds, D., Hallquist, M. N., Asato, M., & Luna, B. (2014). Developmental stages and sex differences of white matter and behavioral development through adolescence: a longitudinal diffusion tensor imaging (DTI) Study. NeuroImage, 92, 356–368.PubMedCrossRefGoogle Scholar
  104. Soriano-Mas, C., Pujol, J., Ortiz, H., Deus, J., Lopez-Sala, A., & Sans, A. (2009). Age-related brain structural alterations in children with specific language impairment. Human Brain Mapping, 30(5), 1626–1636.PubMedCrossRefGoogle Scholar
  105. Tallal, P., Miller, S. L., Jenkins, W. M., & Merzenich, M. M. (1997). The role of temporal processing in developmental language-based learning disorders: Research and clinical implications. In B. A. Blachman (Ed.), Foundations of reading acquisition and dyslexia: Implications for early intervention (pp. 49–66). Mahwah: Lawrence Erlbaum.Google Scholar
  106. Thomas, M., & Karmiloff-Smith, A. (2002). Are developmental disorders like cases of adult brain damage? Implications from connectionist modelling. Behavioral and Brain Sciences, 25(6), 727–750.PubMedCrossRefGoogle Scholar
  107. Tomblin, J. B. (2008). Validating diagnostic standards for specific language impairment using adolescent outcomes. In C. F. Norbury, J. B. Tomblin, & D. V. Bishop (Eds.), Understanding developmental language disorders (pp. 93–114). Hove and New York: Psychology Press.Google Scholar
  108. Tomblin, J. B., & Christiansen, M. H. (2010). Explaining developmental communication disorders. In R. Paul & P. Flipsen Jr. (Eds.), Speech sound disorders in children: In honor of Lawrence D. Shriberg (pp. 35–49). San Diego, CA: Plural Publishing.Google Scholar
  109. Tomblin, J. B., & Zhang, X. (2006). The dimensionality of language ability in school-age children. Journal of Speech, Language, and Hearing Research, 49(6), 1193–1208.PubMedCrossRefGoogle Scholar
  110. Tomblin, J. B., Records, N. L., & Zhang, X. (1996). A system for the diagnosis of specific language impairment in kindergarten children. Journal of Speech and Hearing Research, 39, 1284–1294.PubMedCrossRefGoogle Scholar
  111. Tomblin, J. B., Records, N. L., Buckwalter, P., Zhang, X., Smith, E., & O’Brien, M. (1997). Prevalence of specific language impairment in kindergarten children. Journal of Speech and Hearing Research, 40(6), 1245–1260.CrossRefGoogle Scholar
  112. Urger, S. E., de Bellis, M. D., Hooper, S. R., Woolley, D. P., Chen, S. D., & Provenzale, J. (2015). The superior longitudinal fasciculus in typically developing children and adolescents. Journal of Child Neurology, 30(1), 9–20.PubMedCrossRefGoogle Scholar
  113. Verhoeven, J. S., Rommel, N., Prodi, E., Leemans, A., Zink, I., Vandewalle, E., … Sunaert, S. (2012). Is there a common neuroanatomical substrate of language deficit between autism spectrum disorder and specific language impairment? Cerebral Cortex, 22(10), 2263–2271.PubMedCrossRefGoogle Scholar
  114. Verly, M., Gerrits, R., Sleurs, C., Lagae, L., Sunaert, S., Zink, I., & Rommel, N. (2018). The mis-wired language network in children with developmental language disorder: insights from DTI tractography. Brain Imaging and Behavior. Scholar
  115. Vissers, C., Koolen, S., Hermans, D., Scheper, A., & Knoors, H. (2015). Executive functioning in preschoolers with specific language impairment. Frontiers in Psychology, 20(6), 1574.Google Scholar
  116. Vydrova, R., Komarek, V., Sanda, J., Sterbova, K., Jahodova, A., Maulisova, A., et al. (2015). Structural alterations of the language connectome in children with specific language impairment. Brain and Language, 151, 35–41.PubMedCrossRefGoogle Scholar
  117. Wakana, S., Caprihan, A., Panzenboeck, M. M., Fallon, J. H., Perry, M., Gollub, R. L., … Mori, S. (2007). Reproducibility of quantitative tractography methods applied to cerebral white matter. NeuroImage, 36(3), 630–644.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Wechsler, D. (1999). Wechsler abbreviated scale of intelligence (WASI). San Antonio: The Psychological Corporation.Google Scholar
  119. Westermann, G. (2016). Experience-dependent brain development as a key to understanding the language system. Topics in Cognitive Science, 8(2), 446–458.PubMedCrossRefGoogle Scholar
  120. Wiecki, T. V., & Frank, M. J. (2013). A computational model of inhibitory control in frontal cortex and basal ganglia. Psychological Review, 120(2), 329–355.PubMedCrossRefPubMedCentralGoogle Scholar
  121. Williams, K. (1997). Expressive vocabulary test, second edition (EVT-2). Circle Pines: American Guidance Service.Google Scholar
  122. Wilson, S. M., Galantucci, S., Tartaglia, M. C. R. K., Patterson, D. K., Henry, M. L., … Gorno-Tempini, M. L. (2011). Syntactic processing depends on dorsal language tracts. Neuron, 72(2), 397–403.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Wong, F. C. K., Chandrasekaran, B., Garibaldi, K., & Wong, P. C. M. (2011). White matter anisotropy in the ventral language pathway predicts sound-to-word learning success. Journal of Neuroscience, 31(24), 8780–8785.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Joanna C. Lee
    • 1
    Email author
  • Anthony Steven Dick
    • 2
  • J. Bruce Tomblin
    • 1
  1. 1.Department of Communication Sciences and DisordersUniversity of IowaIowa CityUSA
  2. 2.Department of PsychologyFlorida International UniversityMiamiUSA

Personalised recommendations