Advertisement

Exploratory relationships between cognitive improvements and training induced plasticity in hippocampus and cingulum in a rat model of mild traumatic brain injury: a diffusion MRI study

  • Kim BraeckmanEmail author
  • Benedicte Descamps
  • Christian Vanhove
  • Karen Caeyenberghs
Original Research
  • 28 Downloads

Abstract

Traumatic brain injury (TBI) is a major cause of long-term cognitive deficits, even in mild TBI patients. Computerized cognitive training can help alleviate complaints and improve daily life functioning of TBI patients. However, the underlying biological mechanisms of cognitive training in TBI are not fully understood. In the present study, we utilised for the first time a touchscreen cognitive training system in a rat model of mild TBI. Moreover, we wanted to examine whether the beneficial effects of a cognitive training are task-dependent and selective in their target. Specifically, we examined the effect of two training tasks, i.e. the Paired Associate Learning (PAL) task targeting spatial memory functioning and 5-Choice Continuous Performance (5-CCP) task loading on attention and inhibition control, on the microstructural organization of the hippocampus and cingulum, respectively, using diffusion tensor imaging (DTI). Our findings revealed that the two training protocols induced similar effects on the diffusion MRI metrics. Further, in the TBI groups who received training microstructural organization in the hippocampus and cingulum improved (as denoted by increases in fractional anisotropy), while a worsening (i.e., increases in mean diffusivity and radial diffusivity) was found in the TBI control group. In addition, these alterations in diffusion MRI metrics coincided with improved performance on the training tasks in the TBI groups who received training. Our findings show the potential of DTI metrics as reliable measure to evaluate cognitive training in TBI patients and to facilitate future research investigating further improvement of cognitive training targeting deficits in spatial memory and attention.

Keywords

Mild traumatic brain injury Diffusion MRI Touchscreen cognitive training system Neuroplasticity Preclinical 

Notes

Funding

This work was supported by the Research Foundation – Flanders (FWO) [grant number G027815 N].

Compliance with ethical standards

Conflict of interest

Author K. Braeckman declares that she has no conflict of interest, B. Descamps declares that she has no conflict of interest, C. Vanhove declares that he has no conflict of interest and K. Caeyenberghs declares that she has no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

References

  1. Barbelivien, A., Ruotsalainen, S., & Sirviö, J. (2001). Metabolic alterations in the prefrontal and cingulate cortices are related to behavioral deficits in a rodent model of attention-deficit hyperactivity disorder. Cerebral Cortex, 11, 1056–1063.  https://doi.org/10.1093/cercor/11.11.1056.CrossRefGoogle Scholar
  2. Bari, A., Dalley, J. W., & Robbins, T. W. (2008). The application of the 5-choice serial reaction time task for the assessment of visual attentional processes and impulse control in rats. Nature Protocols, 3(5), 759–767.  https://doi.org/10.1038/nprot.2008.41.CrossRefGoogle Scholar
  3. Bhandari, J., Daya, R., & Mishra, R. K. (2016). Improvements and important considerations for the 5-choice serial reaction time task-an effective measurement of visual attention in rats. Journal of Neuroscience Methods, 270, 17–29.  https://doi.org/10.1016/j.jneumeth.2016.06.002.CrossRefGoogle Scholar
  4. Blumenfeld-Katzir, T., Pasternak, O., Dagan, M., & Assaf, Y. (2011). Diffusion MRI of structural brain plasticity induced by a learning and memory task. PLoS One, 6(6), e20678.  https://doi.org/10.1371/journal.pone.0020678.CrossRefGoogle Scholar
  5. Bogdanova, Y., Yee, M. K., Ho, V. T., & Cicerone, K. D. (2016). Computerized cognitive rehabilitation of attention and executive function in acquired brain injury. The Journal of Head Trauma Rehabilitation, 31(6), 419–433.  https://doi.org/10.1097/HTR.0000000000000203.CrossRefGoogle Scholar
  6. Bonzano, L., Tacchino, A., Brichetto, G., Roccatagliata, L., Dessypris, A., Feraco, P., Lopes de Carvalho, M. L., Battaglia, M. A., Mancardi, G. L., & Bove, M. (2014). Upper limb motor rehabilitation impacts white matter microstructure in multiple sclerosis. NeuroImage, 90, 107–116.  https://doi.org/10.1016/j.neuroimage.2013.12.025.CrossRefGoogle Scholar
  7. Braeckman, K., Descamps, B., Pieters, L., Vral, A., Caeyenberghs, K., & Vanhove, C. (2019). Dynamic changes in hippocampal diffusion and kurtosis metrics following experimental mTBI correlate with glial reactivity. NeuroImage: Clinical, 21(August 2018), 101669.  https://doi.org/10.1016/j.nicl.2019.101669.CrossRefGoogle Scholar
  8. Brayer, S. W., Ketcham, S., Zou, H., Hurwitz, M., Henderson, C., Fuletra, J., Kumar, K., Skidmore, E., Thiels, E., & Wagner, A. K. (2015). Developing a clinically relevant model of cognitive training after experimental traumatic brain injury. Neurorehabilitation and Neural Repair, 29(5), 483–495.  https://doi.org/10.1177/1545968314550367.CrossRefGoogle Scholar
  9. Bussey, T. J., Padain, T. L., Skillings, E. A., Winters, B. D., Morton, A. J., & Saksida, L. M. (2008). The touchscreen cognitive testing method for rodents: how to get the best out of your rat. Learning & memory (Cold Spring Harbor, N.Y.), 15(7), 516–523.  https://doi.org/10.1101/lm.987808.CrossRefGoogle Scholar
  10. Bussey, T. J., Holmes, A., Lyon, L., Mar, A. C., McAllister, K. A. L., Nithianantharajah, J., et al. (2012). New translational assays for preclinical modelling of cognition in schizophrenia: The touchscreen testing method for mice and rats. Neuropharmacology, 62(3), 1191–1203.  https://doi.org/10.1016/j.neuropharm.2011.04.011.CrossRefGoogle Scholar
  11. Campden Instruments. (2011). 89541R- paired associates learning (PAL) task for rat touch screen systems and ABET II. In Instruction manual (pp. 1–49). Lafayette: Lafayette Instrument Company.Google Scholar
  12. Campden Instruments. (2013). 89551-R - the continuous performance test with images ( image CPT / rCPT ) for rat touch screen systems and ABET II. In Instruction manual (pp. 1–93). Lafayette: Lafayette Instrument Company.Google Scholar
  13. Catani, M., Dell’Acqua, F., & Thiebaut de Schotten, M. (2013). A revised limbic system model for memory, emotion and behaviour. Neuroscience and Biobehavioral Reviews, 37(8), 1724–1737.  https://doi.org/10.1016/j.neubiorev.2013.07.001.CrossRefGoogle Scholar
  14. Chudasama, Y., Passetti, F., Rhodes, S. E. V., Lopian, D., Desai, A., & Robbins, T. W. (2003). Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: Differential effects on selectivity, impulsivity and compulsivity. Behavioural Brain Research, 146(1–2), 105–119.  https://doi.org/10.1016/j.bbr.2003.09.020.CrossRefGoogle Scholar
  15. Cicerone, K. D., Dahlberg, C., Malec, J. F., Langenbahn, D. M., Felicetti, T., Kneipp, S., Ellmo, W., Kalmar, K., Giacino, J. T., Harley, J. P., Laatsch, L., Morse, P. A., & Catanese, J. (2005). Evidence-based cognitive rehabilitation: Updated review of the literature from 1998 through 2002. Archives of Physical Medicine and Rehabilitation, 86(8), 1681–1692.  https://doi.org/10.1016/j.apmr.2005.03.024.CrossRefGoogle Scholar
  16. de Lange, A.-M. G., Bråthen, A. C. S., Rohani, D. A., Grydeland, H., Fjell, A. M., & Walhovd, K. B. (2017). The effects of memory training on behavioral and microstructural plasticity in young and older adults. Human Brain Mapping, 38(11), 5666–5680.  https://doi.org/10.1002/hbm.23756.CrossRefGoogle Scholar
  17. DeKosky, S. T., & Asken, B. M. (2017). Injury cascades in TBI-related neurodegeneration. Brain Injury, 31(9), 1177–1182.  https://doi.org/10.1080/02699052.2017.1312528.CrossRefGoogle Scholar
  18. Fan, Y., Lin, K., Liu, H., Chen, Y., & Wu, C. (2015). Changes in structural integrity are correlated with motor and functional recovery after post-stroke rehabilitation. Restorative Neurology and Neuroscience, 33(6), 835–844.  https://doi.org/10.3233/RNN-150523.CrossRefGoogle Scholar
  19. Fetta, J., Starkweather, A., & Gill, J. M. (2017). Computer-based cognitive rehabilitation interventions for traumatic brain injury. Journal of Neuroscience Nursing, 49(4), 235–240.  https://doi.org/10.1097/JNN.0000000000000298.CrossRefGoogle Scholar
  20. Grossman, E. J., Jensen, J. H., Babb, J. S., Chen, Q., Tabesh, A., Fieremans, E., Xia, D., Inglese, M., & Grossman, R. I. (2013). Cognitive impairment in mild traumatic brain injury: a longitudinal diffusional kurtosis and perfusion imaging study. AJNR. American Journal of Neuroradiology, 34, 951–957.  https://doi.org/10.3174/ajnr.A3358.CrossRefGoogle Scholar
  21. Hallock, H., Collins, D., Lampit, A., Deol, K., Fleming, J., & Valenzuela, M. (2016). Cognitive training for post-acute traumatic brain injury: A systematic review and meta-analysis. Frontiers in Human Neuroscience, 10(October).  https://doi.org/10.3389/fnhum.2016.00537.
  22. Han, K., Chapman, S. B., & Krawczyk, D. C. (2018). Neuroplasticity of cognitive control networks following cognitive training for chronic traumatic brain injury. NeuroImage: Clinical, 18(December 2017), 262–278.  https://doi.org/10.1016/j.nicl.2018.01.030.CrossRefGoogle Scholar
  23. Hofstetter, S., & Assaf, Y. (2017). The rapid development of structural plasticity through short water maze training: A DTI study. NeuroImage, 155(May), 202–208.  https://doi.org/10.1016/j.neuroimage.2017.04.056.CrossRefGoogle Scholar
  24. Hofstetter, S., Tavor, I., Tzur Moryosef, S., & Assaf, Y. (2013). Short-term learning induces white matter plasticity in the fornix. The Journal of neuroscience : the official journal of the Society for Neuroscience, 33(31), 12844–12850.  https://doi.org/10.1523/JNEUROSCI.4520-12.2013.CrossRefGoogle Scholar
  25. Hvoslef-Eide, M., Nilsson, S. R. O., Hailwood, J. M., Robbins, T. W., Saksida, L. M., Mar, A. C., & Bussey, T. J. (2018). Effects of anterior cingulate cortex lesions on a continuous performance task for mice. Brain and Neuroscience Advances, 2, 239821281877296.  https://doi.org/10.1177/2398212818772962.CrossRefGoogle Scholar
  26. Kellner, E., Dhital, B., Kiselev, V. G., & Reisert, M. (2016). Gibbs-ringing artifact removal based on local subvoxel-shifts. Magnetic Resonance in Medicine, 76(5), 1574–1581.  https://doi.org/10.1002/mrm.26054.CrossRefGoogle Scholar
  27. Kim, C. H., Heath, C. J., Kent, B. A., Bussey, T. J., & Saksida, L. M. (2015). The role of the dorsal hippocampus in two versions of the touchscreen automated paired associates learning (PAL) task for mice. Psychopharmacology, 232(21–22), 3899–3910.  https://doi.org/10.1007/s00213-015-3949-3.CrossRefGoogle Scholar
  28. Korley, F. K., Kelen, G. D., Jones, C. M., & Diaz-Arrastia, R. (2016). Emergency department evaluation of traumatic brain injury in the United States, 2009–2010. The Journal of Head Trauma Rehabilitation, 31(6), 379–387.  https://doi.org/10.1097/HTR.0000000000000187.CrossRefGoogle Scholar
  29. Leemans, A., Jeurissen, B., Sijbers, J., & Jones, D. (2009). ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. Proceedings on International Society for Magnetic Resonance in Medicine, 17, 3537.Google Scholar
  30. Loening, A. M., & Gambhir, S. S. (2003). AMIDE: A free software tool for multimodality medical image analysis. Molecular Imaging, 2(3), 131–137.  https://doi.org/10.1162/153535003322556877.CrossRefGoogle Scholar
  31. Mar, A. C., Horner, A. E., Nilsson, S. R. O., Alsiö, J., Kent, B. A., Kim, C. H., et al. (2013). The touchscreen operant platform for assessing executive function in rats and mice. Nature Protocols, 8(10), 1985–2005.  https://doi.org/10.1038/nprot.2013.123.CrossRefGoogle Scholar
  32. Marmarou, A., Foda, M. A. A.-E., van den Brink, W., Campbell, J., Kita, H., & Demetriadou, K. (1994). A new model of diffuse brain injury in rats. Journal of Neurosurgery, 80(2), 291–300.  https://doi.org/10.3171/jns.1994.80.2.0291.CrossRefGoogle Scholar
  33. Melby-Lervåg, M., Redick, T. S., & Hulme, C. (2016). Working memory training does not improve performance on measures of intelligence or other measures of “Far Transfer”. Perspectives on Psychological Science, 11(4), 512–534.  https://doi.org/10.1177/1745691616635612.CrossRefGoogle Scholar
  34. Metzler-Baddeley, C., Foley, S., de Santis, S., Charron, C., Hampshire, A., Caeyenberghs, K., & Jones, D. K. (2017). Dynamics of white matter plasticity underlying working memory training: Multimodal evidence from diffusion MRI and Relaxometry. Journal of Cognitive Neuroscience, 29(9), 1509–1520.  https://doi.org/10.1162/jocn_a_01127.CrossRefGoogle Scholar
  35. Minen, M., Jinich, S., & Vallespir Ellett, G. (2019). Behavioral therapies and mind-body interventions for posttraumatic headache and post-concussive symptoms: A systematic review. Headache: The Journal of Head and Face Pain, 59(2), 151–163.  https://doi.org/10.1111/head.13455.CrossRefGoogle Scholar
  36. Mychasiuk, R., Hehar, H., & Esser, M. J. (2015). A mild traumatic brain injury (mTBI) induces secondary attention-deficit hyperactivity disorder-like symptomology in young rats. Behavioural Brain Research, 286, 285–292.  https://doi.org/10.1016/j.bbr.2015.03.010.CrossRefGoogle Scholar
  37. Nichols, J. N., Hagan, K. L., & Floyd, C. L. (2017). Evaluation of touchscreen chambers to assess cognition in adult mice: Effect of training and mild traumatic brain injury. Journal of Neurotrauma, 34(17), 2481–2494.  https://doi.org/10.1089/neu.2017.4998.CrossRefGoogle Scholar
  38. Peeters, W., van den Brande, R., Polinder, S., Brazinova, A., Steyerberg, E. W., Lingsma, H. F., & Maas, A. I. R. (2015). Epidemiology of traumatic brain injury in Europe. Acta Neurochirurgica, 157(10), 1683–1696.  https://doi.org/10.1007/s00701-015-2512-7.CrossRefGoogle Scholar
  39. Radabaugh, H. L., LaPorte, M. J., Greene, A. M., Bondi, C. O., Lajud, N., Radabaugh, H. L., et al. (2017). Refining environmental enrichment to advance rehabilitation based research after experimental traumatic brain injury. Experimental Neurology, 294, 12–18.  https://doi.org/10.1016/j.expneurol.2017.04.013.CrossRefGoogle Scholar
  40. Sagi, Y., Tavor, I., Hofstetter, S., Tzur-Moryosef, S., Blumenfeld-Katzir, T., & Assaf, Y. (2012). Learning in the fast lane: New insights into neuroplasticity: Supplement. Neuron, 73(6), 1195–1203.  https://doi.org/10.1016/j.neuron.2012.01.025.CrossRefGoogle Scholar
  41. Salmond, C. H., Menon, D. K., Chatfield, D. A., Williams, G. B., Pena, A., Sahakian, B. J., & Pickard, J. D. (2006). Diffusion tensor imaging in chronic head injury survivors: Correlations with learning and memory indices. NeuroImage, 29(1), 117–124.  https://doi.org/10.1016/j.neuroimage.2005.07.012.CrossRefGoogle Scholar
  42. Sampaio-Baptista, C., Khrapitchev, A. A., Foxley, S., Schlagheck, T., Scholz, J., Jbabdi, S., DeLuca, G. C., Miller, K. L., Taylor, A., Thomas, N., Kleim, J., Sibson, N. R., Bannerman, D., & Johansen-Berg, H. (2013). Motor skill learning induces changes in white matter microstructure and myelination. Journal of Neuroscience, 33(50), 19499–19503.  https://doi.org/10.1523/JNEUROSCI.3048-13.2013.CrossRefGoogle Scholar
  43. Scholz, J., Niibori, Y., W Frankland, P., & P Lerch, J. (2015). Rotarod training in mice is associated with changes in brain structure observable with multimodal MRI. NeuroImage, 107, 182–189.  https://doi.org/10.1016/j.neuroimage.2014.12.003.CrossRefGoogle Scholar
  44. Shepherd, A., Tyebji, S., Hannan, A. J., & Burrows, E. L. (2016). Translational assays for assessment of cognition in rodent models of Alzheimer’s disease and dementia. Journal of Molecular Neuroscience, 60(3), 371–382.  https://doi.org/10.1007/s12031-016-0837-1.CrossRefGoogle Scholar
  45. Shipstead, Z., Hicks, K. L., & Engle, R. W. (2012). Cogmed working memory training: Does the evidence support the claims? Journal of Applied Research in Memory and Cognition, 1(3), 185–193.  https://doi.org/10.1016/j.jarmac.2012.06.003.CrossRefGoogle Scholar
  46. Silverberg, N. D., Panenka, W. J., & Iverson, G. L. (2018). Work productivity loss after mild traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 99(2), 250–256.  https://doi.org/10.1016/j.apmr.2017.07.006.CrossRefGoogle Scholar
  47. Talpos, J. C., Winters, B. D., Dias, R., Saksida, L. M., & Bussey, T. J. (2009). A novel touchscreen-automated paired-associate learning (PAL) task sensitive to pharmacological manipulation of the hippocampus: a translational rodent model of cognitive impairments in neurodegenerative disease. Psychopharmacology, 205(1), 157–168.  https://doi.org/10.1007/s00213-009-1526-3.CrossRefGoogle Scholar
  48. The American Congress of Rehabilitation Medicine. (1993). Definition of mild traumatic brain injury. The Journal of Head Trauma Rehabilitation, 8(3), 86–87.  https://doi.org/10.1097/00001199-199309000-00010.CrossRefGoogle Scholar
  49. Thomas, R. E., Alves, J., Vaska Mlis, M. M., & Magalhaes, R. (2017). Therapy and rehabilitation of mild brain injury/concussion: Systematic review. Restorative Neurology and Neuroscience, 35(6), 643–666.  https://doi.org/10.3233/RNN-170761.CrossRefGoogle Scholar
  50. Veraart, J., Sijbers, J., Sunaert, S., Leemans, A., & Jeurissen, B. (2013). Weighted linear least squares estimation of diffusion MRI parameters: Strengths, limitations, and pitfalls. NeuroImage, 81, 335–346.  https://doi.org/10.1016/j.neuroimage.2013.05.028.CrossRefGoogle Scholar
  51. Veraart, J., Fieremans, E., & Novikov, D. S. (2016a). Diffusion MRI noise mapping using random matrix theory. Magnetic Resonance in Medicine, 76(5), 1582–1593.  https://doi.org/10.1002/mrm.26059.CrossRefGoogle Scholar
  52. Veraart, J., Novikov, D. S., Christiaens, D., Ades-aron, B., Sijbers, J., & Fieremans, E. (2016b). Denoising of diffusion MRI using random matrix theory. NeuroImage, 142, 394–406.  https://doi.org/10.1016/j.neuroimage.2016.08.016.CrossRefGoogle Scholar
  53. Vonder Haar, C., Lam, F. C. W., Adams, W. K., Riparip, L. K., Kaur, S., Muthukrishna, M., Rosi, S., & Winstanley, C. A. (2016). Frontal traumatic brain injury in rats causes long-lasting impairments in impulse control that are differentially sensitive to Pharmacotherapeutics and associated with chronic Neuroinflammation. ACS Chemical Neuroscience, 7(11), 1531–1542.  https://doi.org/10.1021/acschemneuro.6b00166.CrossRefGoogle Scholar
  54. Young, J. W., Light, G. A., Marston, H. M., Sharp, R., & Geyer, M. A. (2009). The 5-choice continuous performance test: Evidence for a translational test of vigilance for mice. PLoS One, 4(1), e4227.  https://doi.org/10.1371/journal.pone.0004227.CrossRefGoogle Scholar
  55. Yuan, W., Treble-Barna, A., Sohlberg, M. M., Harn, B., & Wade, S. L. (2017). Changes in structural connectivity following a cognitive intervention in children with traumatic brain injury. Neurorehabilitation and Neural Repair, 31(2), 190–201.  https://doi.org/10.1177/1545968316675430.CrossRefGoogle Scholar
  56. Yuh, E. L., Cooper, S. R., Mukherjee, P., Yue, J. K., Lingsma, H. F., Gordon, W. A., Valadka, A. B., Okonkwo, D. O., Schnyer, D. M., Vassar, M. J., Maas, A. I. R., Manley, G. T., and the Track-TBI Investigators including, Casey, S. S., Cheong, M., Dams-O'Connor, K., Hricik, A. J., Inoue, T., Menon, D. K., Morabito, D. J., Pacheco, J. L., Puccio, A. M., & Sinha, T. K. (2014). Diffusion tensor imaging for outcome prediction in mild traumatic brain injury: A TRACK-TBI study. Journal of Neurotrauma, 31(17), 1457–1477.  https://doi.org/10.1089/neu.2013.3171.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Infinity Lab, Medical Imaging and Signal Processing Group-IBiTechUGentGhentBelgium
  2. 2.Mary MacKillop Institute for Health ResearchAustralian Catholic UniversityMelbourneAustralia

Personalised recommendations