Advertisement

Attention control and its emotion-specific association with cognitive emotion regulation in depression

  • Leonie Anne Kathrin LoefflerEmail author
  • Theodore Daniel Satterthwaite
  • Ute Habel
  • Frank Schneider
  • Sina Radke
  • Birgit Derntl
Original Research
  • 52 Downloads

Abstract

Individuals with major depression show impaired control of attention and emotions. Both processes are conceptually similar and might share common mechanisms. The current study aims to examine attention control and its association with cognitive emotion regulation in depression. 26 patients with a history of major depression (14 females) and 26 healthy controls (14 females) performed an emotional face-word Stroop task and a cognitive emotion regulation task while undergoing fMRI. Patients and controls showed a similar behavioral performance in both tasks. Across groups, participants who were less distracted from happy faces by the incongruent word “sadness” (Stroop task) were better at regulating their happiness (emotion regulation task). Notably, both the Stroop and emotion regulation task recruited the left supramarginal gyrus. Additionally, only patients showed a relative attentional disengagement from positive compared to negative stimuli in the Stroop task. Attention control and cognitive emotion regulation capabilities appear to be linked at both the behavioral and neural level. Shared mechanisms suggest that emotional disturbances in depression may be improved by interventions that target attention control, particularly regarding the processing of positive stimuli.

Keywords

Stroop Attention control Interference processing Cognitive emotion regulation Reappraisal Depression fMRI 

Notes

Acknowledgements

This study was supported by the Brain Imaging Facility of the Interdisciplinary Center for Clinical Research within the Faculty of Medicine at the RWTH Aachen University and by the International Research Training Group (IRTG 2150) of the German Research Foundation (DFG).

Ute Habel, Frank Schneider, Sina Radke, and Birgit Derntl were supported by JARA-Brain. Leonie Loeffler was supported by a PhD stipend of the RWTH Aachen University. Theodore Satterthwaite was supported by NIMH R01MH107703.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Supplementary material

11682_2019_174_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 19.1 kb)

References

  1. Armstrong, T., & Olatunji, B. O. (2012). Eye tracking of attention in the affective disorders: A meta-analytic review and synthesis. Clinical Psychology Review, 32(8), 704–723.  https://doi.org/10.1016/j.cpr.2012.09.004.CrossRefGoogle Scholar
  2. Army Individual Test Battery. (1944). Manual of directions and scoring. In Washington DC: War department, adjutant General’s office: War department. Adjutant: General’s Office.Google Scholar
  3. Beauregard, M., Paquette, V., & Lévesque, J. (2006). Dysfunction in the neural circuitry of emotional self-regulation in major depressive disorder. Neuroreport, 17(8), 843–846.  https://doi.org/10.1097/01.wnr.0000220132.32091.9f.CrossRefGoogle Scholar
  4. Beck, A. T. (2008). The evolution of the cognitive model of depression and its neurobiological correlates. American Journal of Psychiatry, 165, 969–977.CrossRefGoogle Scholar
  5. Botvinick, M. M. (2007). Conflict monitoring and decision making: Reconciling two perspectives on anterior cingulate function. Cognitive, Affective, & Behavioral Neuroscience, 7(4), 356–366.CrossRefGoogle Scholar
  6. Browning, M., Holmes, E. A., & Harmer, C. J. (2010). The modification of attentional bias to emotional information: A review of the techniques, mechanisms, and relevance to emotional disorders. Cognitive, Affective, & Behavioral Neuroscience, 10(1), 8–20.  https://doi.org/10.3758/CABN.10.1.8.CrossRefGoogle Scholar
  7. Buhle, J. T., Silvers, J. A., Wage, T. D., Lopez, R., Onyemekwu, C., Kober, H., et al. (2014). Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies. Cerebral Cortex, 24, 2981–2990.  https://doi.org/10.1093/cercor/bht154.CrossRefGoogle Scholar
  8. Chechko, N., Augustin, M., Zvyagintsev, M., & Schneider, F. (2013). Brain circuitries involved in emotional interference task in major depression disorder. Journal of Affective Disorders, 149(1), 136–145.  https://doi.org/10.1016/j.jad.2013.01.013.CrossRefGoogle Scholar
  9. Compton, R. J., Robinson, M. D., Ode, S., Quandt, L. C., Fineman, S. L., & Carp, J. (2008). Error-monitoring ability predicts daily stress regulation. Psychological Science, 19(7), 702–708.  https://doi.org/10.1111/j.1467-9280.2008.02145.x.CrossRefGoogle Scholar
  10. Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 215–229.  https://doi.org/10.1038/nrn755.CrossRefGoogle Scholar
  11. Deschamps, I., Baum, S. R., & Gracco, V. L. (2014). On the role of the supramarginal gyrus in phonological processing and verbal working memory: Evidence from rTMS studies. Neuropsychologia, 53(1), 39–46.  https://doi.org/10.1016/j.neuropsychologia.2013.10.015.CrossRefGoogle Scholar
  12. Ebner, N. C., Riediger, M., & Lindenberger, U. (2010). FACES — A database of facial expressions in young, middle-aged, and older women and men: Development and validation. Behavior Research Methods, 42(1), 351–362.  https://doi.org/10.3758/BRM.42.1.351.CrossRefGoogle Scholar
  13. Egner, T., & Hirsch, J. (2005). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8(12), 1784–1790.  https://doi.org/10.1038/nn1594.CrossRefGoogle Scholar
  14. Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R., Amunts, K., & Zilles, K. (2005). A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage, 25(4), 1325–1335.  https://doi.org/10.1016/j.neuroimage.2004.12.034.CrossRefGoogle Scholar
  15. Epp, A. M., Dobson, K. S., Dozois, D. J. A., & Frewen, P. A. (2012). A systematic meta-analysis of the Stroop task in depression. Clinical Psychology Review, 32(4), 316–328.  https://doi.org/10.1016/j.cpr.2012.02.005.CrossRefGoogle Scholar
  16. Etkin, A., Egner, T., Peraza, D. M., Kandel, E. R., & Hirsch, J. (2006). Resolving emotional conflict : A role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron, 51, 871–882.  https://doi.org/10.1016/j.neuron.2006.07.029.CrossRefGoogle Scholar
  17. Feng, C., Becker, B., Huang, W., Wu, X., Eickhoff, S. B., & Chen, T. (2018). Neural substrates of the emotion-word and emotional counting Stroop tasks in healthy and clinical populations: A meta-analysis of functional brain imaging studies. NeuroImage, 173, 258–274.  https://doi.org/10.1016/j.neuroimage.2018.02.023.CrossRefGoogle Scholar
  18. Forman, S. D., Cohen, J. D., Fitzgerald, M., Eddy, W. F., Mintun, M. A., & Noll, D. C. (1995). Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): Use of a cluster-size threshold. Magnetic Resonance in Medicine, 33(5), 636–647.CrossRefGoogle Scholar
  19. Gross, J. J. (1998). The emerging field of emotion regulation: An integrative review. Review of General Psychology, 2(3), 271–299.  https://doi.org/10.1037/1089-2680.2.3.271.CrossRefGoogle Scholar
  20. Gross, J. J., & Thompson, R. A. (2007). Emotion regulation: Conceptual foundations. In J. J. Gross (Ed.), Handbook of emotion regulation. New York: The Guilford Press.Google Scholar
  21. Hautzinger, M., Bailer, M., Worall, H., & Keller, F. (1995). Beck-depressions-Inventar. (BDI). Bern: Huber.Google Scholar
  22. Hornung, J., Kogler, L., Erb, M., Freiherr, J., & Derntl, B. (2018). The human body odor compound androstadienone increases neural conflict coupled to higher behavioral costs during an emotional Stroop task. Neuroimage, 171, 364–375.CrossRefGoogle Scholar
  23. Hu, Z., Liu, H., Weng, X., & Northoff, G. (2012). Is there a valence-specific pattern in emotional conflict in major depressive disorder? An exploratory psychological study. PLoS One, 7(2), e31983.  https://doi.org/10.1371/journal.pone.0031983.CrossRefGoogle Scholar
  24. Inzlicht, M., Bartholow, B. D., & Hirsh, J. B. (2015). Emotional foundations of cognitive control. Trends in Cognitive Sciences, 19(3), 126–132.  https://doi.org/10.1016/j.tics.2015.01.004.CrossRefGoogle Scholar
  25. Johnstone, T., van Reekum, C. M., Urry, H. L., Kalin, N. H., & Davidson, R. J. (2007). Failure to regulate: Counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. The Journal of Neuroscience, 27(33), 8877–8884.  https://doi.org/10.1523/JNEUROSCI.2063-07.2007.CrossRefGoogle Scholar
  26. Joormann, J., & Vanderlind, W. M. (2014). Emotion regulation in depression: The role of biased cognition and reduced cognitive control. Clinical Psychological Science, 2(4), 402–421.  https://doi.org/10.1177/2167702614536163.CrossRefGoogle Scholar
  27. Joyal, M., Wensing, T., Levasseur-Moreau, J., Leblond, J., Sack, A. T., & Fecteau, S. (2019). Characterizing emotional Stroop interference in posttraumatic stress disorder, major depression and anxiety disorders: A systematic review and meta-analysis. PloS One, 14(4), e0214998 doi.org/10.1371/journal.pone.0214998.CrossRefGoogle Scholar
  28. Kanske, P., Heissler, J., Schönfelder, S., Bongers, A., & Wessa, M. (2011). How to regulate emotion? Neural networks for reappraisal and distraction. Cerebral Cortex, 21, 1379–1388.  https://doi.org/10.1093/cercor/bhq216.CrossRefGoogle Scholar
  29. Kerns, J. G., Cohen, J. D., Iii, A. W. M., Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Sciene, 303, 1023–1027.  https://doi.org/10.1126/science.1089910.CrossRefGoogle Scholar
  30. Kohn, N., Eickhoff, S. B., Scheller, M., Laird, A. R., Fox, P. T., & Habel, U. (2014). Neural network of cognitive emotion regulation - an ALE meta-analysis and MACM analysis. NeuroImage, 87, 345–355.  https://doi.org/10.1016/j.neuroimage.2013.11.001.CrossRefGoogle Scholar
  31. Krebs, R. M., Boehler, C. N., De Belder, M., & Egner, T. (2015). Neural conflict – Control mechanisms improve memory for target stimuli. Cerebral Cortex, 25, 833–843.  https://doi.org/10.1093/cercor/bht283.CrossRefGoogle Scholar
  32. Laux, L., Glanzmann, P., Schaffner, P., & Spielberger, C. D. (1981). STAI: Das state-trait-Angstinventar. Weinheim: Beltz.Google Scholar
  33. Li, C. R., Huang, C., Constable, R. T., & Sinha, R. (2006). Imaging response inhibition in a stop-signal task: Neural correlates independent of signal monitoring and post-response processing. The Journal of Neuroscience, 26(1), 186–192.  https://doi.org/10.1523/JNEUROSCI.3741-05.2006.CrossRefGoogle Scholar
  34. Li, C. R., Yan, P., Chao, H. H., Sinha, R., Paliwal, P., Constable, T., et al. (2009). Error-specific medial cortical and subcortical activity during the stop signal task - a functional magnetic resonance imaging study. Neuroscience, 155(4), 1142–1151.  https://doi.org/10.1016/j.neuroscience.2008.06.062.CrossRefGoogle Scholar
  35. Loeffler, L. A. K., Radke, S., Habel, U., Ciric, R., Satterthwaite, T. D., Schneider, F., & Derntl, B. (2018). The regulation of positive and negative emotions through instructed causal attributions in lifetime depression – A functional magnetic resonance imaging study. NeuroImage: Clinical, 20, 1233–1245.  https://doi.org/10.1016/j.nicl.2018.10.025.CrossRefGoogle Scholar
  36. Morawetz, C., Bode, S., Baudewig, J., Kirilina, E., & Heekeren, H. R. (2016). Changes in effective connectivity between dorsal and ventral prefrontal regions moderate emotion regulation. Cerebral Cortex, 26(5), 1923–1937.  https://doi.org/10.1093/cercor/bhv005.CrossRefGoogle Scholar
  37. Morawetz, C., Bode, S., Derntl, D., & Heekeren, H. R. (2017). The effect of strategies, goals and stimulus material on the neural mechanisms of emotion regulation: A meta-analysis of fMRI studies. Neuroscience and Biobehavioral Reviews, 72, 111–128.  https://doi.org/10.1016/j.neubiorev.2016.11.014.CrossRefGoogle Scholar
  38. Nachev, P., Kennard, C., & Husain, M. (2008). Functional role of the supplementary and pre-supplementary motor areas. Nature Reviews Neuroscience, 9, 856–869.  https://doi.org/10.1038/nrn2478.CrossRefGoogle Scholar
  39. Northoff, G., Heinzel, A., De Greck, M., Bermpohl, F., Dobrowolny, H., & Panksepp, J. (2006). Self-referential processing in our brain — A meta-analysis of imaging studies on the self. NeuroImage, 31, 440–457.  https://doi.org/10.1016/j.neuroimage.2005.12.002.CrossRefGoogle Scholar
  40. Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9(5), 242–249.  https://doi.org/10.1016/j.tics.2005.03.010.CrossRefGoogle Scholar
  41. Ochsner, K. N., Silvers, J., & Buhle, J. T. (2012). Functional imaging studies of emotion regulation: A synthetic review and evolving model of the cognitive control of emotion. Annals of the New York Academy of Sciences, 1251, E1–E24.  https://doi.org/10.1111/j.1749-6632.2012.06751.x.
  42. Peckham, A. D., Mchugh, R. K., & Otto, M. W. (2010). A meta-analysis of the magnitude of biased attention in depression. Depression and Anxiety, 27(12), 1135–1142.  https://doi.org/10.1002/da.20755.CrossRefGoogle Scholar
  43. Phillips, M. L., Ladouceur, C. D., & Drevets, W. C. (2008). A neural model of voluntary and automatic emotion regulation: Implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Molecular Psychiatry, 13(829), 833–857.  https://doi.org/10.1038/mp.2008.65.CrossRefGoogle Scholar
  44. Radke, S., Hoffstaedter, F., Löffler, L., Kogler, L., Schneider, F., Blechert, J., & Derntl, B. (2018). Imaging the up’s and down’s of emotion regulation in lifetime depression. Brain Imaging and Behavior, 12(1), 156–167.  https://doi.org/10.1007/s11682-017-9682-2.CrossRefGoogle Scholar
  45. Rive, M. M., van Rooijen, G., Veltman, D. J., Phillips, M. L., Schene, A. H., & Ruhé, H. G. (2013). Neural correlates of dysfunctional emotion regulation in major depressive disorder. A systematic review of neuroimaging studies. Neuroscience and Biobehavioral Reviews, 37(10), 2529–2553.  https://doi.org/10.1016/j.neubiorev.2013.07.018.CrossRefGoogle Scholar
  46. Schmidt, K.-H., & Metzler, P. (1992). Wortschatztest (WST). Weinheim: Beltz Test GmbH.Google Scholar
  47. Stickel, S., Quinete, N., Habel, U., & Chechko, N. (2019). Cumulative cortisol exposure in the third trimester correlates with postpartum mothers’ neural response to emotional interference. Biological Psychiatry, 143, 53–61.  https://doi.org/10.1016/j.biopsycho.2019.02.008.CrossRefGoogle Scholar
  48. Van Oostrom, I., Franke, B., Arias Vasquez, A., Rinck, M., Tendolkar, I., Verhagen, M., et al. (2013). Never-depressed females with a family history of depression demonstrate affective bias. Psychiatry Research, 205(1–2), 54–58.  https://doi.org/10.1016/j.psychres.2012.08.004.CrossRefGoogle Scholar
  49. Vanderhasselt, M., Baeken, C., Van Schuerbeek, P., Luypaert, R., & Raedt, R. D. (2013). Inter-individual differences in the habitual use of cognitive reappraisal and expressive suppression are associated with variations in prefrontal cognitive control for emotional information: An event related fMRI study. Biological Psychology, 92(3), 433–439.  https://doi.org/10.1016/j.biopsycho.2012.03.005.CrossRefGoogle Scholar
  50. Watson, D., & Clark, L. A. (1991). The mood and anxiety symptom questionnaire. Iowa City: University of Iowa.Google Scholar
  51. Wells, T. T., Beevers, C. G., Wells, T. T., & Beevers, C. G. (2010). Biased attention and dysphoria: Manipulating selective attention reduces subsequent depressive symptoms. Cognition and Emotion, 24(4), 719–728.  https://doi.org/10.1080/02699930802652388.CrossRefGoogle Scholar
  52. Williams, J. B. W. (1988). Strukturierte Interview-Richtlinien für die Hamilton Depression Rating Scale. Archives of General Psychiatry, 45, 742–747.CrossRefGoogle Scholar
  53. Wittchen, H. U., Fydrich, T., & Zaudig, M. (1997). Strukturiertes klinisches Interview für DSM-IV: psychische Störungen; Interviewheft und Beurteilungsheft; SKID-I.. Achse I. Göttingen: Hogrefe.Google Scholar
  54. Xu, M., Xu, G., & Yang, Y. (2016). Neural systems underlying emotional and non-emotional interference processing: An ALE meta-analysis of functional neuroimaging studies. Frontiers in Behavioral Neuroscience, 10(220), eCollection 2016).  https://doi.org/10.3389/fnbeh.2016.00220.
  55. Zhang, S., Ide, J. S., & Li, C. R. (2012). Resting-state functional connectivity of the medial superior frontal cortex. Cerebral Cortex, 22, 99–111.  https://doi.org/10.1093/cercor/bhr088.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH AachenAachenGermany
  2. 2.Neuropsychiatry Division, Department of Psychiatry, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.JARA-Institute Brain Structure Function RelationshipResearch Center Jülich and RWTH AachenAachenGermany
  4. 4.Institute of Neuroscience and Medicine 10Research Center JülichJülichGermany
  5. 5.University Hospital DüsseldorfDüsseldorfGermany
  6. 6.Department of Psychiatry and Psychotherapy, Medical SchoolUniversity of TübingenTübingenGermany
  7. 7.Werner Reichardt Center for Integrative NeuroscienceUniversity of TübingenTübingenGermany
  8. 8.LEAD Graduate School and Research NetworkUniversity of TübingenTübingenGermany

Personalised recommendations