Aberrant brain gray matter in murderers

  • Ashly Sajous-Turner
  • Nathaniel E. AndersonEmail author
  • Matthew Widdows
  • Prashanth Nyalakanti
  • Keith Harenski
  • Carla Harenski
  • Michael Koenigs
  • Jean Decety
  • Kent A. KiehlEmail author
Original Research


Homicide is a significant societal problem with economic costs in the billions of dollars annually and incalculable emotional impact on victims and society. Despite this high burden, we know very little about the neuroscience of individuals who commit homicide. Here we examine brain gray matter differences in incarcerated adult males who have committed homicide (n = 203) compared to other non-homicide offenders (n = 605; total n = 808). Homicide offenders’ show reduced gray matter in brain areas critical for behavioral control and social cognition compared with subsets of other violent and non-violent offenders. This demonstrates, for the first time, that unique brain abnormalities may distinguish offenders who kill from other serious violent offenders and non-violent antisocial individuals.


Brain imaging Homicide Voxel-based morphometry Violence Antisocial behavior 



The authors would like to thank the Wisconsin Department of Corrections and the New Mexico Department of Corrections for their cooperative efforts with the Mind Research Network.


This research was supported in part by grants from the National Institute of Mental Health: R01DA026505, R01DA026964, R01DA020870, R01MH070539, and R01MH087525 (PI: Kent Kiehl), R01MH087525 (PI: Jean Decety), R01MH090169 (PI: David Kosson) and the Macarthur Foundation Law and Neuroscience Project.

Compliance with ethical standards

Conflict of interest

The authors report no competing interests.

Ethical approval

This research was approved by multiple IRBs, including the Ethical and Independent Review Services (E&I), the University of Wisconsin-Madison, divisions of the Corrections Department of Wisconsin and The New Mexico Corrections Department as well as the Office of Human Research Protections (OHRP).

Informed consent

All individuals volunteered to participate after providing written informed consent. Participation did not affect institutional status (e.g., security level, privileges, and parole or release date) and participants were paid for their time at a rate commensurate with pay for work assignments at their facility.

Supplementary material

11682_2019_155_MOESM1_ESM.docx (1.1 mb)
ESM 1 (DOCX 1106 kb)


  1. Amen, D. G., Hanks, C., Prunella, J. R., & Green, A. (2007). An analysis of regional cerebral blood flow in impulsive murderers using single photon emission computed tomography. The Journal of Neuropsychiatry and Clinical Neurosciences, 19(3), 304–309.Google Scholar
  2. Anderson, N. E., & Kiehl, K. A. (2012). The psychopath magnetized: Insights from brain imaging. Trends in Cognitive Sciences, 16(1), 52–60.Google Scholar
  3. Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry—The methods. Neuroimage, 11(6), 805–821.Google Scholar
  4. Bannon, S. M., Salis, K. L., & O'Leary, K. D. (2015). Structural brain abnormalities in aggression and violent behavior. Aggression and Violent Behavior, 25, 323–331.Google Scholar
  5. Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6), 215–222.Google Scholar
  6. Camille, N., Coricelli, G., Sallet, J., Pradat-Diehl, P., Duhamel, J.-R., & Sirigu, A. (2004). The involvement of the orbitofrontal cortex in the experience of regret. Science, 304(5674), 1167–1170.Google Scholar
  7. Cope, L., Ermer, E., Gaudet, L., Steele, V., Eckhardt, A., Arbabshirani, M., et al. (2014). Abnormal brain structure in youth who commit homicide. Neuroimage: clinical, 4, 800–807.Google Scholar
  8. Coricelli, G., Critchley, H. D., Joffily, M., O'Doherty, J. P., Sirigu, A., & Dolan, R. J. (2005). Regret and its avoidance: A neuroimaging study of choice behavior. Nature Neuroscience, 8(9), 1255–1262.Google Scholar
  9. De Brito, S. A., Mechelli, A., Wilke, M., Laurens, K. R., Jones, A. P., Barker, G. J., et al. (2009). Size matters: Increased grey matter in boys with conduct problems and callous–unemotional traits. Brain, 132(4), 843–852.Google Scholar
  10. Decety, J. (2011). Dissecting the neural mechanisms mediating empathy. Emotion Review, 3(1), 92–108.Google Scholar
  11. DeLisi, M., Kosloski, A., Sween, M., Hachmeister, E., Moore, M., & Drury, A. (2010). Murder by numbers: Monetary costs imposed by a sample of homicide offenders. The Journal of Forensic Psychiatry & Psychology, 21(4), 501–513.Google Scholar
  12. Ermer, E., Cope, L. M., Nyalakanti, P. K., Calhoun, V. D., & Kiehl, K. A. (2012). Aberrant paralimbic gray matter in criminal psychopathy. Journal of Abnormal Psychology, 121(3), 649–658.Google Scholar
  13. Ermer, E., Cope, L. M., Nyalakanti, P. K., Calhoun, V. D., & Kiehl, K. A. (2013). Aberrant paralimbic gray matter in incarcerated male adolescents with psychopathic traits. Journal of the American Academy of Child & Adolescent Psychiatry, 52(1), 94–103 e103.Google Scholar
  14. Fairchild, G., Passamonti, L., Hurford, G., Hagan, C. C., von dem Hagen, E. A., van Goozen, S. H., et al. (2011). Brain structure abnormalities in early-onset and adolescent-onset conduct disorder. American Journal of Psychiatry, 168(6), 624–633.Google Scholar
  15. Farahany, N. A. (2016). Neuroscience and behavioral genetics in US criminal law: An empirical analysis. Journal of Law and the Biosciences, 2(3), 485–509.Google Scholar
  16. First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. (2002). Structured clinical interview for DSM-IV-TR axis I disorders, research version, patient edition: SCID-I/P.Google Scholar
  17. Gaudet, L. M., & Marchant, G. E. (2016). Under the radar: Neuroimaging evidence in the criminal courtroom. Drake L. Rev., 64, 577.Google Scholar
  18. Gregory, S., Simmons, A., Kumari, V., Howard, M., Hodgins, S., & Blackwood, N. (2012). The antisocial brain: Psychopathy matters: A structural MRI investigation of antisocial male violent offenders. Archives of General Psychiatry, 69(9), 962–972.Google Scholar
  19. Hare, R. D. (2003). Hare PCL-R. Rating Booklet (2nd ed.). Toronto: Multi-Health System.Google Scholar
  20. Hare, R. D., & Neumann, C. S. (2005). Structural models of psychopathy. Current Psychiatry Reports, 7(1), 57–64.Google Scholar
  21. Hare, R. D., Clark, D., Grann, M., & Thornton, D. (2000). Psychopathy and the predictive validity of the PCL-R: An international perspective. Behavioral Sciences & the Law, 18(5), 623–645.Google Scholar
  22. Howard, J. D., Gottfried, J. A., Tobler, P. N., & Kahnt, T. (2015). Identity-specific coding of future rewards in the human orbitofrontal cortex. Proceedings of the National Academy of Sciences, 201503550.Google Scholar
  23. Hutcherson, C. A., Plassmann, H., Gross, J. J., & Rangel, A. (2012). Cognitive regulation during decision making shifts behavioral control between ventromedial and dorsolateral prefrontal value systems. Journal of Neuroscience, 32(39), 13543–13554.Google Scholar
  24. King, N., Crawford, S., Wenden, F., Moss, N., & Wade, D. (1995). The Rivermead post concussion symptoms questionnaire: A measure of symptoms commonly experienced after head injury and its reliability. Journal of Neurology, 242(9), 587–592.Google Scholar
  25. Lam, B. Y., Yang, Y., Schug, R. A., Han, C., Liu, J., & Lee, T. (2017). Psychopathy moderates the relationship between orbitofrontal and striatal alterations and violence: The investigation of individuals accused of homicide. Frontiers in Human Neuroscience, 11, 579.Google Scholar
  26. McLellan, A. T., Kushner, H., Metzger, D., Peters, R., Smith, I., Grissom, G., et al. (1992). The fifth edition of the addiction severity index. Journal of Substance Abuse Treatment, 9(3), 199–213.Google Scholar
  27. Moll, J., de Oliveira-Souza, R., Bramati, I. E., & Grafman, J. (2002). Functional networks in emotional moral and nonmoral social judgments. Neuroimage, 16(3), 696–703.Google Scholar
  28. Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9(5), 242–249.Google Scholar
  29. Ochsner, K. N., Silvers, J. A., & Buhle, J. T. (2012). Functional imaging studies of emotion regulation: A synthetic review and evolving model of the cognitive control of emotion. Annals of the New York Academy of Sciences, 1251(1), E1–E24.Google Scholar
  30. Olson, I. R., Plotzker, A., & Ezzyat, Y. (2007). The enigmatic temporal pole: A review of findings on social and emotional processing. Brain, 130(7), 1718–1731.Google Scholar
  31. Puri, B. K., Counsell, S. J., Saeed, N., Bustos, M. G., Treasaden, I. H., & Bydder, G. M. (2008). Regional grey matter volumetric changes in forensic schizophrenia patients: An MRI study comparing the brain structure of patients who have seriously and violently offended with that of patients who have not. BMC Psychiatry, 8(1), S6.Google Scholar
  32. Raine, A., Buchsbaum, M. S., Stanley, J., Lottenberg, S., Abel, L., & Stoddard, J. (1994). Selective reductions in prefrontal glucose metabolism in murderers. Biological Psychiatry, 36(6), 365–373.Google Scholar
  33. Raine, A., Buchsbaum, M., & LaCasse, L. (1997). Brain abnormalities in murderers indicated by positron emission tomography. Biological Psychiatry, 42(6), 495–508.Google Scholar
  34. Raine, A., Meloy, J. R., Bihrle, S., Stoddard, J., LaCasse, L., & Buchsbaum, M. S. (1998). Reduced prefrontal and increased subcortical brain functioning assessed using positron emission tomography in predatory and affective murderers. Behavioral Sciences & the Law, 16(3), 319–332.Google Scholar
  35. Raine, A., Lencz, T., Bihrle, S., LaCasse, L., & Colletti, P. (2000). Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Archives of General Psychiatry, 57(2), 119–127.Google Scholar
  36. Reidy, D. E., Kearns, M. C., DeGue, S., Lilienfeld, S. O., Massetti, G., & Kiehl, K. A. (2015). Why psychopathy matters: Implications for public health and violence prevention. Aggression and Violent Behavior, 24, 214–225.Google Scholar
  37. Rich, E. L., & Wallis, J. D. (2016). Decoding subjective decisions from orbitofrontal cortex. Nature Neuroscience, 19(7), 973.Google Scholar
  38. Rosell, D. R., & Siever, L. J. (2015). The neurobiology of aggression and violence. CNS Spectrums, 20(3), 254–279.Google Scholar
  39. Ryan, J. J., Lopez, S. J., & Werth, T. R. (1999). Development and preliminary validation of a Satz-Mogel short form of the WAIS-III in a sample of persons with substance abuse disorders. International Journal of Neuroscience, 98(1–2), 131–140.Google Scholar
  40. Salekin, R. T., Rogers, R., & Sewell, K. W. (1996). A review and meta-analysis of the psychopathy checklist and psychopathy checklist-revised: Predictive validity of dangerousness. Clinical Psychology: Science and Practice, 3(3), 203–215.Google Scholar
  41. Smith, D., Smith, R., & Misquitta, D. (2016). Neuroimaging and violence. Psychiatric Clinics, 39(4), 579–597.Google Scholar
  42. Tiihonen, J., Rossi, R., Laakso, M. P., Hodgins, S., Testa, C., Perez, J., et al. (2008). Brain anatomy of persistent violent offenders: More rather than less. Psychiatry Research: Neuroimaging, 163(3), 201–212.Google Scholar
  43. U.S. Department of Justice: Federal Bureau of Investigation (2016/2017). Murder. Uniform Crime Report. Retrieved September 20, 2018, from
  44. Völlm, B. A., Taylor, A. N., Richardson, P., Corcoran, R., Stirling, J., McKie, S., et al. (2006). Neuronal correlates of theory of mind and empathy: A functional magnetic resonance imaging study in a nonverbal task. Neuroimage, 29(1), 90–98.Google Scholar
  45. Wechsler, D. (1997). WAiS-iii: Psychological Corporation San Antonio, TX.Google Scholar
  46. Yang, Y., Raine, A., Han, C.-B., Schug, R. A., Toga, A. W., & Narr, K. L. (2010). Reduced hippocampal and parahippocampal volumes in murderers with schizophrenia. Psychiatry Research: Neuroimaging, 182(1), 9–13.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Mind Research NetworkAlbuquerqueUSA
  2. 2.University of New MexicoAlbuquerqueUSA
  3. 3.University of Wisconsin – MadisonMadisonUSA
  4. 4.University of ChicagoChicagoUSA

Personalised recommendations