Advertisement

Resting-state functional connectivity, cognition, and fatigue in response to cognitive exertion: a novel study in adolescents with chronic fatigue syndrome

  • Elisha K. JosevEmail author
  • Charles B. Malpas
  • Marc L. Seal
  • Adam Scheinberg
  • Lionel Lubitz
  • Kathy Rowe
  • Sarah J. Knight
ORIGINAL RESEARCH

Abstract

Emerging evidence suggests that central nervous system dysfunction may underlie the core symptoms of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) in adults, such as cognitive disturbance, fatigue and post-exertional malaise. Research into brain dysfunction in the pediatric CFS/ME context, however, is severely lacking. It is unclear whether the adolescent CFS/ME brain functions differently compared with healthy peers, particularly in situations where significant mental effort is required. This study used resting-state functional MRI in a novel repeated-measures design to evaluate intrinsic connectivity, cognitive function, and subjective fatigue, before and after a period of cognitive exertion in 48 adolescents (25 CFS/ME, 23 healthy controls). Results revealed little evidence for a differential effect of cognitive exertion in CFS/ME compared with controls. Both groups demonstrated a similar rate of reduced intrinsic functional connectivity within the default mode network (DMN), reduced sustained attentional performance, slower processing speed, and increased subjective fatigue as a result of cognitive exertion. However, CFS/ME adolescents consistently displayed higher subjective fatigue, and controls outperformed the CFS/ME group overall on cognitive measures of processing speed, sustained attention and new learning. No brain-behavior relationships were observed between DMN connectivity, cognitive function, and fatigue over time. These findings suggest that effortful cognitive tasks may elicit similar levels of energy expenditure across all individuals in the form of reduced brain functioning and associated fatigue. However, CFS/ME may confer a lower starting threshold from which to access energy reserves and cognitive resources when cognitive effort is required.

Keywords

Chronic fatigue syndrome Resting-state fMRI Cognitive function Fatigue Default mode network Adolescence 

Notes

Acknowledgements

This study was funded by ME Research UK (SCIO charity number SCO36942, http://www.meresearch.org.uk/), and supported by the Murdoch Children’s Research Institute, the Royal Children’s Hospital, Department of Paediatrics at The University of Melbourne, and the Victorian Government’s Operational Infrastructure Support Program. The authors have no conflicts of interest to declare. We sincerely thank Cathriona Clarke, Jian Chen, Sarah Arnup, Diana Zannino, the Royal Children’s Hospital CFS Rehabilitation Clinic, and Medical Imaging staff for their assistance with this study. We also thank the research participants and their families for generously donating their time to this study.

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Andersson, J. L., Skare, S., & Ashburner, J. (2003). How to correct susceptibility distortions in spin-echo echo-planar images: Application to diffusion tensor imaging. NeuroImage, 20(2), 870–888.  https://doi.org/10.1016/s1053-8119(03)00336-7.Google Scholar
  2. Arnett, S. V., Alleva, L. M., Korossy-Horwood, R., & Clark, I. A. (2011). Chronic fatigue syndrome--a neuroimmunological model. Medical Hypotheses, 77(1), 77–83.Google Scholar
  3. Australian Bureau of Statistics: Socio-Economic Indexes for Areas (SEIFA). (2011). Retrieved from http://www.abs.gov.au/websitedbs/censushome.nsf/home/seifa. Accessed 05 Nov 2016
  4. Bakken, I., Tveito, K., Gunnes, N., Ghaderi, S., Stoltenberg, C., Trogstad, L., . . . Magnus, P. (2014). Two age peaks in the incidence of chronic fatigue syndrome/myalgic encephalomyelitis: A population-based registry study from Norway 2008-2012. BMC Medicine, 12(1), 167.  https://doi.org/10.1186/s12916-014-0167-5.Google Scholar
  5. Barnden, L. R., Crouch, B., Kwiatek, R., Burnet, R., Mernone, A., Chryssidis, S., . . . Del Fante, P. (2011). A brain MRI study of chronic fatigue syndrome: Evidence of brainstem dysfunction and altered homeostasis. NMR in Biomedicine, 24(10), 1302–1312.  https://doi.org/10.1002/nbm.1692.Google Scholar
  6. Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage, 37(1), 90–101.  https://doi.org/10.1016/j.neuroimage.2007.04.042.Google Scholar
  7. Bisecco, A., Nardo, F. D., Docimo, R., Caiazzo, G., d'Ambrosio, A., Bonavita, S., . . . Gallo, A. (2017). Fatigue in multiple sclerosis: The contribution of resting-state functional connectivity reorganization. Multiple Sclerosis, 1352458517730932.  https://doi.org/10.1177/1352458517730932, 24, 1696, 1705.
  8. Boissoneault, J., Letzen, J., Lai, S., Robinson, M. E., & Staud, R. (2016). Static and dynamic functional connectivity in patients with chronic fatigue syndrome: Use of arterial spin labelling fMRI. Clinical Physiology and Functional Imaging, 38, 128–137.  https://doi.org/10.1111/cpf.12393.Google Scholar
  9. Brooks, J. C., Roberts, N., Whitehouse, G., & Majeed, T. (2000). Proton magnetic resonance spectroscopy and morphometry of the hippocampus in chronic fatigue syndrome. The British Journal of Radiology, 73(875), 1206–1208.Google Scholar
  10. Buchwald, D., Cheney, P. R., Peterson, D. L., Henry, B., Wormsley, S. B., Geiger, A., . . ., Ablashi D.V., Salahuddin S.Z., Saxinger C., Biddle R. (1992). A chronic illness characterized by fatigue, neurologic and immunologic disorders, and active human herpesvirus type 6 infection. Annals of Internal Medicine, 116(2), 103–113.Google Scholar
  11. Caseras, X., Mataix-Cols, D., Giampietro, V., Rimes, K. A., Brammer, M., Zelaya, F., . . . Godfrey, E. L. (2006). Probing the working memory system in chronic fatigue syndrome: A functional magnetic resonance imaging study using the n-back task. Psychosomatic Medicine, 68(6), 947–955.  https://doi.org/10.1097/01.psy.0000242770.50979.5f.Google Scholar
  12. Chaudhuri, A., Condon, B. R., Gow, J. W., Brennan, D., & Hadley, D. M. (2003). Proton magnetic resonance spectroscopy of basal ganglia in chronic fatigue syndrome. Neuroreport, 14(2), 225–228.  https://doi.org/10.1097/01.wnr.0000054960.21656.64.Google Scholar
  13. Chen, R., Liang, F. X., Moriya, J., Yamakawa, J., Sumino, H., Kanda, T., & Takahashi, T. (2008). Chronic fatigue syndrome and the central nervous system. The Journal of International Medical Research, 36(5), 867–874.Google Scholar
  14. Cockshell, S. J., & Mathias, J. L. (2010). Cognitive functioning in chronic fatigue syndrome: A meta-analysis. Psychological Medicine, 40(8), 1253–1267.  https://doi.org/10.1017/s0033291709992054.Google Scholar
  15. CogState computerized testing of cognitive function. (version 1.0). (2007). Retrieved from https://cogstate.com/. Accessed 05 Nov 2016
  16. Cook, D. B., O'Connor, P. J., Lange, G., & Steffener, J. (2007). Functional neuroimaging correlates of mental fatigue induced by cognition among chronic fatigue syndrome patients and controls. NeuroImage, 36(1), 108–122.  https://doi.org/10.1016/j.neuroimage.2007.02.033.Google Scholar
  17. Cope, H., Pernet, A., Kendall, B., & David, A. (1995). Cognitive functioning and magnetic resonance imaging in chronic fatigue. The British Journal of Psychiatry, 167(1), 86–94.Google Scholar
  18. Crawley, E., & Sterne, J. A. (2009). Association between school absence and physical function in paediatric chronic fatigue syndrome/myalgic encephalopathy. Archives of Disease in Childhood, 94(10), 752–756.  https://doi.org/10.1136/adc.2008.143537.Google Scholar
  19. Crawley, E., Emond, A. M., & Sterne, J. A. (2011). Unidentified chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is a major cause of school absence: Surveillance outcomes from school-based clinics. BMJ Open, 1(2), e000252.  https://doi.org/10.1136/bmjopen-2011-000252.Google Scholar
  20. Crichton, A., Knight, S. J., Oakley, E., Babl, F., & Anderson, V. (2015). Fatigue in child chronic health conditions: A systematic review of assessment instruments. Pediatrics, 135(4), In Press.), e1015–e1031.Google Scholar
  21. Darby, D. G., Pietrzak, R. H., Fredrickson, J., Woodward, M., Moore, L., Fredrickson, A., . . . Maruff, P. (2012). Intraindividual cognitive decline using a brief computerized cognitive screening test. Alzheimers Dement, 8(2), 95–104.  https://doi.org/10.1016/j.jalz.2010.12.009.Google Scholar
  22. de Lange, F. P., Kalkman, J. S., Bleijenberg, G., Hagoort, P., van der Meer, J. W., & Toni, I. (2005). Gray matter volume reduction in the chronic fatigue syndrome. NeuroImage, 26(3), 777–781.  https://doi.org/10.1016/j.neuroimage.2005.02.037.Google Scholar
  23. de Lange, F. P., Koers, A., Kalkman, J. S., Bleijenberg, G., Hagoort, P., van der Meer, J. W., & Toni, I. (2008). Increase in prefrontal cortical volume following cognitive behavioural therapy in patients with chronic fatigue syndrome. Brain, 131(Pt 8), 2172–2180.  https://doi.org/10.1093/brain/awn140.Google Scholar
  24. Deale, A., & Wessely, S. (2001). Patients' perceptions of medical care in chronic fatigue syndrome. Social Science & Medicine, 52(12), 1859–1864.Google Scholar
  25. Falleti, M. G., Maruff, P., Collie, A., & Darby, D. G. (2006). Practice effects associated with the repeated assessment of cognitive function using the CogState battery at 10-minute, one week and one month test-retest intervals. Journal of Clinical and Experimental Neuropsychology, 28(7), 1095–1112.  https://doi.org/10.1080/13803390500205718.Google Scholar
  26. Fischer, T., Langner, R., Birbaumer, N., & Brocke, B. (2008). Arousal and attention: Self-chosen stimulation optimizes cortical excitability and minimizes compensatory effort. Journal of Cognitive Neuroscience, 20(8), 1443–1453.  https://doi.org/10.1162/jocn.2008.20101.Google Scholar
  27. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678.  https://doi.org/10.1073/pnas.0504136102.Google Scholar
  28. Gay, C. W., Robinson, M. E., Lai, S., O'Shea, A., Craggs, J. G., Price, D. D., & Staud, R. (2016). Abnormal resting-state functional connectivity in patients with chronic fatigue syndrome: Results of seed and data-driven analyses. Brain Connectivity, 6(1), 48–56.  https://doi.org/10.1089/brain.2015.0366.Google Scholar
  29. Gui, D., Xu, S., Zhu, S., Fang, Z., Spaeth, A. M., Xin, Y., . . . Rao, H. (2015). Resting spontaneous activity in the default mode network predicts performance decline during prolonged attention workload. NeuroImage, 120, 323–330.  https://doi.org/10.1016/j.neuroimage.2015.07.030.Google Scholar
  30. Gur, A., & Oktayoglu, P. (2008). Central nervous system abnormalities in fibromyalgia and chronic fatigue syndrome: New concepts in treatment. Current Pharmaceutical Design, 14(13), 1274–1294.Google Scholar
  31. Haig-Ferguson, A., Tucker, P., Eaton, N., Hunt, L., & Crawley, E. (2009). Memory and attention problems in children with chronic fatigue syndrome or myalgic encephalopathy. Archives of Disease in Childhood, 94(10), 757–762.  https://doi.org/10.1136/adc.2008.143032.Google Scholar
  32. Harris, P. A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., & Conde, J. G. (2009). Research electronic data capture (REDCap) - a metadata-driven methodology and workflow process for providing translational research informatics support. Journal of Biomedical Informatics, 42(2), 377–381.  https://doi.org/10.1016/j.jbi.2008.08.010.Google Scholar
  33. Hemington, K. S., Wu, Q., Kucyi, A., Inman, R. D., & Davis, K. D. (2016). Abnormal cross-network functional connectivity in chronic pain and its association with clinical symptoms. Brain Structure & Function, 221(8), 4203–4219.  https://doi.org/10.1007/s00429-015-1161-1.Google Scholar
  34. Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10(3), 626–634.  https://doi.org/10.1109/72.761722.Google Scholar
  35. Jason, L. A., Bell, D. S., Rowe, K., Van Hoof, E., Jordan, K., Lapp, C. W., . . . De Meirleir, K. (2006). A pediatric case definition for Myalgic Encephalomyalitis and chronic fatigue syndrome. J Chron Fat Synd, 13(2/3), 1–44.Google Scholar
  36. Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). FSL. NeuroImage, 62(2), 782–790.  https://doi.org/10.1016/j.neuroimage.2011.09.015.Google Scholar
  37. Josev, E. K., Jackson, M. L., Bei, B., Trinder, J., Harvey, A., Clarke, C., . . . Knight, S. J. (2017). Sleep quality in adolescents with chronic fatigue syndrome/Myalgic encephalomyelitis (CFS/ME). Journal of Clinical Sleep Medicine, 13(9), 1057–1066.  https://doi.org/10.5664/jcsm.6722.Google Scholar
  38. Kawatani, J., Mizuno, K., Shiraishi, S., Takao, M., Joudoi, T., Fukuda, S., . . . Tomoda, A. (2011). Cognitive dysfunction and mental fatigue in childhood chronic fatigue syndrome--a 6-month follow-up study. Brain Dev, 33(10), 832–841.  https://doi.org/10.1016/j.braindev.2010.12.009.Google Scholar
  39. Kim, B. H., Namkoong, K., Kim, J. J., Lee, S., Yoon, K. J., Choi, M., & Jung, Y. C. (2015). Altered resting-state functional connectivity in women with chronic fatigue syndrome. Psychiatry Research, 234(3), 292–297.  https://doi.org/10.1016/j.pscychresns.2015.10.014.Google Scholar
  40. Knight, S. J., Harvey, A., Lubitz, L., Rowe, K., Reveley, C., Veit, F., . . . Scheinberg, A. (2013a). Paediatric chronic fatigue syndrome: Complex presentations and protracted time to diagnosis. Journal of Paediatrics and Child Health, 49(11), 919–924.  https://doi.org/10.1111/jpc.12425.Google Scholar
  41. Knight, S. J., Scheinberg, A., & Harvey, A. R. (2013b). Interventions in pediatric chronic fatigue syndrome/myalgic encephalomyelitis: A systematic review. The Journal of Adolescent Health, 53(2), 154–165.  https://doi.org/10.1016/j.jadohealth.2013.03.009.Google Scholar
  42. Knight, S. J., Harvey, A., Hennel, S., Lubitz, L., Rowe, K., Reveley, C., . . . Scheinberg, A. (2015). Measuring quality of life and fatigue in adolescents with chronic fatigue syndrome: Estimates of feasibility, internal consistency and parent–adolescent agreement of the PedsQLTM. Fatigue: Biomedicine, Health & Behavior, 3(4), 220–234.  https://doi.org/10.1080/21641846.2015.1090816.Google Scholar
  43. Kral, T. V., Heo, M., Whiteford, L. M., & Faith, M. S. (2012). Effects on cognitive performance of eating compared with omitting breakfast in elementary schoolchildren. Journal of Developmental and Behavioral Pediatrics, 33(1), 9–16.  https://doi.org/10.1097/DBP.0b013e31823f2f35.Google Scholar
  44. Lange, G., DeLuca, J., Maldjian, J. A., Lee, H., Tiersky, L. A., & Natelson, B. H. (1999). Brain MRI abnormalities exist in a subset of patients with chronic fatigue syndrome. Journal of the Neurological Sciences, 171(1), 3–7.Google Scholar
  45. Lange, G., Holodny, A. I., DeLuca, J., Lee, H. J., Yan, X. H., Steffener, J., & Natelson, B. H. (2001). Quantitative assessment of cerebral ventricular volumes in chronic fatigue syndrome. Applied Neuropsychology, 8(1), 23–30.  https://doi.org/10.1207/S15324826AN0801_4.Google Scholar
  46. Lange, G., Steffener, J., Cook, D. B., Bly, B. M., Christodoulou, C., Liu, W. C., . . . Natelson, B. H. (2005). Objective evidence of cognitive complaints in chronic fatigue syndrome: A BOLD fMRI study of verbal working memory. NeuroImage, 26(2), 513–524.  https://doi.org/10.1016/j.neuroimage.2005.02.011.Google Scholar
  47. Langner, R., Steinborn, M. B., Chatterjee, A., Sturm, W., & Willmes, K. (2010). Mental fatigue and temporal preparation in simple reaction-time performance. Acta Psychologica, 133(1), 64–72.  https://doi.org/10.1016/j.actpsy.2009.10.001.Google Scholar
  48. Lee, K. A., Hicks, G., & Nino-Murcia, G. (1991). Validity and reliability of a scale to assess fatigue. Psychiatry Research, 36(3), 291–298.Google Scholar
  49. Lewandowski, A. S., Toliver-Sokol, M., & Palermo, T. M. (2011). Evidence-based review of subjective pediatric sleep measures. Journal of Pediatric Psychology, 36(7), 780–793.Google Scholar
  50. Marshall-Gradisnik, S., Huth, T., Chacko, A., Johnston, S., Smith, P., & Staines, D. (2016). Natural killer cells and single nucleotide polymorphisms of specific ion channels and receptor genes in myalgic encephalomyelitis/chronic fatigue syndrome. The Application of Clinical Genetics, 9, 39–47.  https://doi.org/10.2147/tacg.s99405.Google Scholar
  51. Martuzzi, R., Ramani, R., Qiu, M., Shen, X., Papademetris, X., & Constable, R. T. (2011). A whole-brain voxel based measure of intrinsic connectivity contrast reveals local changes in tissue connectivity with anesthetic without a priori assumptions on thresholds or regions of interest. NeuroImage, 58(4), 1044–1050.  https://doi.org/10.1016/j.neuroimage.2011.06.075.Google Scholar
  52. Maruff, P., Falleti, M. G., Collie, A., Darby, D., & McStephen, M. (2005). Fatigue-related impairment in the speed, accuracy and variability of psychomotor performance: Comparison with blood alcohol levels. Journal of Sleep Research, 14(1), 21–27.  https://doi.org/10.1111/j.1365-2869.2004.00438.x.Google Scholar
  53. Maruff, P., Thomas, E., Cysique, L., Brew, B., Collie, A., Snyder, P., & Pietrzak, R. H. (2009). Validity of the CogState brief battery: Relationship to standardized tests and sensitivity to cognitive impairment in mild traumatic brain injury, schizophrenia, and AIDS dementia complex. Archives of Clinical Neuropsychology, 24(2), 165–178.  https://doi.org/10.1093/arclin/acp010.Google Scholar
  54. Mason, M. F., Norton, M. I., Van Horn, J. D., Wegner, D. M., Grafton, S. T., & Macrae, C. N. (2007). Wandering minds: The default network and stimulus-independent thought. Science, 315(5810), 393–395.  https://doi.org/10.1126/science.1131295.Google Scholar
  55. Mathew, S. J., Mao, X., Keegan, K. A., Levine, S. M., Smith, E. L. P., Heier, L. A., . . . Shungu, D. C. (2009). Ventricular cerebrospinal fluid lactate is increased in chronic fatigue syndrome compared with generalized anxiety disorder: An in vivo 3.0 T (1)H MRS imaging study. NMR in Biomedicine, 22(3), 251–258.Google Scholar
  56. Michiels, V., & Cluydts, R. (2001). Neuropsychological functioning in chronic fatigue syndrome: A review. Acta Psychiatrica Scandinavica, 103(2), 84–93.Google Scholar
  57. Morris, G., & Maes, M. (2013). A neuro-immune model of Myalgic encephalomyelitis/chronic fatigue syndrome. Metabolic Brain Disease, 28(4), 523–540.  https://doi.org/10.1007/s11011-012-9324-8.Google Scholar
  58. Morris, G., & Maes, M. (2014). Oxidative and Nitrosative stress and immune-inflammatory pathways in patients with Myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS). Current Neuropharmacology, 12(2), 168–185.  https://doi.org/10.2174/1570159x11666131120224653.Google Scholar
  59. Morris, G., Berk, M., & Puri, B. K. (2018). A comparison of neuroimaging abnormalities in multiple sclerosis, major depression and chronic fatigue syndrome (Myalgic encephalomyelitis): Is there a common cause? Molecular Neurobiology, 55(4), 3592–3609.  https://doi.org/10.1007/s12035-017-0598-z.Google Scholar
  60. Murrough, J. W., Mao, X., Collins, K. A., Kelly, C., Andrade, G., Nestadt, P., . . . Shungu, D. C. (2010). Increased ventricular lactate in chronic fatigue syndrome measured by 1H MRS imaging at 3.0 T. II: Comparison with major depressive disorder. NMR in Biomedicine, 23(6), 643–650.  https://doi.org/10.1002/nbm.1512.Google Scholar
  61. Nakatomi, Y., Mizuno, K., Ishii, A., Wada, Y., Tanaka, M., Tazawa, S., . . . Watanabe, Y. (2014). Neuroinflammation in patients with chronic fatigue syndrome/Myalgic encephalomyelitis: An 11C-(R)-PK11195 PET study. Journal of Nuclear Medicine, 55(6), 945–950.  https://doi.org/10.2967/jnumed.113.131045.Google Scholar
  62. Napadow, V., LaCount, L., Park, K., As-Sanie, S., Clauw, D. J., & Harris, R. E. (2010). Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis and Rheumatism, 62(8), 2545–2555.  https://doi.org/10.1002/art.27497.Google Scholar
  63. Nickerson, L. D., Smith, S. M., Öngür, D., & Beckmann, C. F. (2017). Using dual regression to investigate network shape and amplitude in functional connectivity analyses. Frontiers in Neuroscience, 11, 115–115.  https://doi.org/10.3389/fnins.2017.00115.Google Scholar
  64. Nijhof, S. L., Maijer, K., Bleijenberg, G., Uiterwaal, C., Kimpen, J., & van de Putte, E. M. (2011). Adolescent chronic fatigue syndrome: Prevalence, incidence, and morbidity. Pediatrics, 127(5), e1169–e1175.Google Scholar
  65. Nijs, J., Meeus, M., Van Oosterwijck, J., Ickmans, K., Moorkens, G., Hans, G., & De Clerck, L. S. (2012). In the mind or in the brain? Scientific evidence for central sensitisation in chronic fatigue syndrome. European Journal of Clinical Investigation, 42(2), 203–212.  https://doi.org/10.1111/j.1365-2362.2011.02575.x.Google Scholar
  66. Okada, T., Tanaka, M., Kuratsune, H., Watanabe, Y., & Sadato, N. (2004). Mechanisms underlying fatigue: A voxel-based morphometric study of chronic fatigue syndrome. BMC Neurology, 4(1), 14.  https://doi.org/10.1186/1471-2377-4-14.Google Scholar
  67. Perrin, R., Embleton, K., Pentreath, V. W., & Jackson, A. (2011). Longitudinal MRI shows no cerebral abnormality in chronic fatigue syndrome. The British Journal of Radiology, 83(989), 419–423.Google Scholar
  68. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154.  https://doi.org/10.1016/j.neuroimage.2011.10.018.Google Scholar
  69. Puri, B. K., Counsell, S. J., Zaman, R., Main, J., Collins, A. G., Hajnal, J. V., & Davey, N. J. (2002). Relative increase in choline in the occipital cortex in chronic fatigue syndrome. Acta Psychiatrica Scandinavica, 106(3), 224–226.Google Scholar
  70. Rangel, L., Garralda, M. E., Levin, M., & Roberts, H. (2000). The course of severe chronic fatigue syndrome in childhood. Journal of the Royal Society of Medicine, 93(3), 129–134.Google Scholar
  71. Rimes, K. A., Goodman, R., Hotopf, M., Wessely, S., Meltzer, H., & Chalder, T. (2007). Incidence, prognosis, and risk factors for fatigue and chronic fatigue syndrome in adolescents: A prospective community study. Pediatrics, 119(3), e603–e609.Google Scholar
  72. Rowe, P. C., Underhill, R. A., Friedman, K. J., Gurwitt, A., Medow, M. S., Schwartz, M. S., . . . Rowe, K. S. (2017). Myalgic encephalomyelitis/chronic fatigue syndrome diagnosis and Management in Young People: A primer. Frontiers in Pediatrics, 5, 121.  https://doi.org/10.3389/fped.2017.00121.Google Scholar
  73. Shan, Z. Y., Finegan, K., Bhuta, S., Ireland, T., Staines, D. R., Marshall-Gradisnik, S. M., & Barnden, L. R. (2018a). Brain function characteristics of chronic fatigue syndrome: A task fMRI study. NeuroImage: Clinical, 19, 279–286.  https://doi.org/10.1016/j.nicl.2018.04.025.Google Scholar
  74. Shan, Z. Y., Finegan, K., Bhuta, S., Ireland, T., Staines, D. R., Marshall-Gradisnik, S. M., & Barnden, L. R. (2018b). Decreased connectivity and increased blood oxygenation level dependent complexity in the default mode network in individuals with chronic fatigue syndrome. Brain Connectivity, 8(1), 33–39.  https://doi.org/10.1089/brain.2017.0549.Google Scholar
  75. Sherman, L. E., Rudie, J. D., Pfeifer, J. H., Masten, C. L., McNealy, K., & Dapretto, M. (2014). Development of the default mode and central executive networks across early adolescence: A longitudinal study. Developmental Cognitive Neuroscience, 10, 148–159.  https://doi.org/10.1016/j.dcn.2014.08.002.Google Scholar
  76. Shulman, G. L., Fiez, J. A., Corbetta, M., Buckner, R. L., Miezin, F. M., Raichle, M. E., & Petersen, S. E. (1997). Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. Journal of Cognitive Neuroscience, 9(5), 648–663.  https://doi.org/10.1162/jocn.1997.9.5.648.Google Scholar
  77. Shungu, D. C., Weiduschat, N., Murrough, J. W., Mao, X., Pillemer, S., Dyke, J. P., . . . Mathew, S. J. (2012). Increased ventricular lactate in chronic fatigue syndrome. III. Relationships to cortical glutathione and clinical symptoms implicate oxidative stress in disorder pathophysiology. NMR in Biomedicine  https://doi.org/10.1002/nbm.2772, 25, 1073, 1087.Google Scholar
  78. Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., . . . Beckmann, C. F. (2009). Correspondence of the brain's functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 13040–13045.  https://doi.org/10.1073/pnas.0905267106.Google Scholar
  79. Solé-Padullés, C., Castro-Fornieles, J., de la Serna, E., Calvo, R., Baeza, I., Moya, J., . . . Sugranyes, G. (2016). Intrinsic connectivity networks from childhood to late adolescence: Effects of age and sex. Developmental Cognitive Neuroscience, 17, 35–44.  https://doi.org/10.1016/j.dcn.2015.11.004.Google Scholar
  80. Spence, S. H. (1998). A measure of anxiety symptoms among children. Behaviour Research and Therapy, 36(5), 545–566.Google Scholar
  81. Spence, S. H., Barrett, P. M., & Turner, C. M. (2003). Psychometric properties of the Spence Children's anxiety scale with young adolescents. Journal of Anxiety Disorders, 17(6), 605–625.Google Scholar
  82. StataCorp. (2013). Stata statistical software: Release 13. TX, United States: College Station, StataCorp LP.Google Scholar
  83. Storfer-Isser, A., Lebourgeois, M. K., Harsh, J., Tompsett, C. J., & Redline, S. (2013). Psychometric properties of the adolescent sleep hygiene scale. Journal of Sleep Research, 22, 707–716.  https://doi.org/10.1111/jsr.12059.Google Scholar
  84. Sulheim, D., Fagermoen, E., Sivertsen, O. S., Winger, A., Wyller, V. B., & Oie, M. G. (2015). Cognitive dysfunction in adolescents with chronic fatigue: A cross-sectional study. Archives of Disease in Childhood, 100(9), 838–844.  https://doi.org/10.1136/archdischild-2014-306764.Google Scholar
  85. Tanaka, M., Sadato, N., Okada, T., Mizuno, K., Sasabe, T., Tanabe, H. C., . . . Watanabe, Y. (2006). Reduced responsiveness is an essential feature of chronic fatigue syndrome: A fMRI study. BMC Neurology, 6, 9–9.  https://doi.org/10.1186/1471-2377-6-9.Google Scholar
  86. Tian, L., Jiang, T., Wang, Y., Zang, Y., He, Y., Liang, M., . . . Zhuo, Y. (2006). Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder. Neuroscience Letters, 400(1–2), 39–43.  https://doi.org/10.1016/j.neulet.2006.02.022.Google Scholar
  87. Tseng, B. Y., Gajewski, B. J., & Kluding, P. M. (2010). Reliability, responsiveness, and validity of the visual analog fatigue scale to measure exertion fatigue in people with chronic stroke: A preliminary study. Stroke Res Treat, 2010, 1–7.  https://doi.org/10.4061/2010/412964.Google Scholar
  88. Uddin, L. Q., Kelly, A. M., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2009). Functional connectivity of default mode network components: Correlation, anticorrelation, and causality. Human Brain Mapping, 30(2), 625–637.  https://doi.org/10.1002/hbm.20531.Google Scholar
  89. Wechsler, D. (2007). Wechsler individual achievement test - Australian abbreviated (WIAT-II abbreviated) (Second ed.). Sydney: Pearson Clinical.Google Scholar
  90. Wechsler, D. (2011). Wechsler abbreviated scale of intelligence, Second edition (WASI-II. San Antonio, Texas: NCS Pearson.Google Scholar
  91. White, D., Leach, C., Sims, R., Atkinson, M., & Cottrell, D. (1999). Validation of the hospital anxiety and depression scale for use with adolescents. The British Journal of Psychiatry, 175, 452–454.Google Scholar
  92. Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity, 2(3), 125–141.  https://doi.org/10.1089/brain.2012.0073.Google Scholar
  93. Wortinger, L. A., Endestad, T., Melinder, A. M. D., Øie, M. G., Sevenius, A., & Bruun Wyller, V. (2016). Aberrant resting-state functional connectivity in the salience network of adolescent chronic fatigue syndrome. PLoS One, 11(7), e0159351.  https://doi.org/10.1371/journal.pone.0159351.Google Scholar
  94. Wortinger, L. A., Glenne Øie, M., Endestad, T., & Bruun Wyller, V. (2017). Altered right anterior insular connectivity and loss of associated functions in adolescent chronic fatigue syndrome. PLoS One, 12(9), e0184325.  https://doi.org/10.1371/journal.pone.0184325.Google Scholar
  95. Zigmond, A. S., & Snaith, R. P. (1983). The hospital anxiety and depression scale. Acta Psychiatrica Scandinavica, 67(6), 361–370.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Neurodisability and RehabilitationMurdoch Children’s Research InstituteMelbourneAustralia
  2. 2.Department of PaediatricsUniversity of MelbourneMelbourneAustralia
  3. 3.Developmental ImagingMurdoch Children’s Research InstituteMelbourneAustralia
  4. 4.Clinical Outcomes Research Unit (CORe), Department of Medicine, Royal Melbourne HospitalThe University of MelbourneMelbourneAustralia
  5. 5.Department of PaediatricsMonash UniversityMelbourneAustralia
  6. 6.Victorian Paediatric Rehabilitation ServiceRoyal Children’s HospitalMelbourneAustralia
  7. 7.Department of General MedicineRoyal Children’s HospitalMelbourneAustralia

Personalised recommendations