Longitudinal fMRI task reveals neural plasticity in default mode network with disrupted executive-default coupling and selective attention after traumatic brain injury

  • Shun-Chin Jim Wu
  • Lisanne M. Jenkins
  • Alexandra C. Apple
  • Julie Petersen
  • Furen Xiao
  • Lei Wang
  • Fan-pei Gloria YangEmail author


Executive dysfunctions are common in individuals with Traumatic Brain Injury (TBI). However, change in functional neural coupling of default and executive networks in the post-acute phase (≥ 1 month after injury) patients over time has yet to be understood. During a 5-week observation period, we examined changes in the goal-oriented executive function networks in 20 TBI participants, using a face/scene matching 1-back fMRI task (Chen et al. 2011). We conducted multivariate pattern analysis to assess working memory and visual selective attention, followed by a repeat-measures ANOVA to examine longitudinal changes, with a cluster FDR at p = .001. Results showed that task accuracy significantly improved after follow-up. Significantly increased activity patterns over time were observed in the right dorsolateral prefrontal cortex and right insula. Decreased activity patterns were seen in the left posterior cingulate cortex (PCC), bilateral precuneus, right inferior occipital gyrus and right temporo-occipital junction. Improvement in task accuracy correlated with decreased activity patterns in the PCC (r = −0.478, p = 0.031) and temporo-occipital junction (r = −0.592, p = 0.006), which were interpreted as neural plastic changes. However, we did not observe the default mode network (DMN)-executive network decoupling during task performance that is found in other studies. These results suggest that fMRI of attentional task performance could serve as a potential biomarker for neural plasticity of selective attention in TBI patients in the post-acute phase.


Executive function Machine learning Multivariate Plasticity Working memory 



The authors wish to thank the participating patients and a number of individuals who made this study possible, in particular: Anthony J.-W. Chen, MD for sharing the task design; Thorsten Kahnt, PhD for MVPA guidance; Amy Anne Herrold, PhD and James L Reilly, PhD for TBI consultation.


This work was supported by a grant from the Taiwan Ministry of Science and Technology (NSC 103–2420-H-007-004-MY2) to Fan-pei Gloria Yang.

Compliance with ethical standards

Conflict of interests

There is no conflict of interests in our research.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


The task paradigm employed in this study has proved test–retest effects for TBI patients (Chen et al. 2011). In addition, in previous longitudinal studies with N-back tests, task-based fMRI showed robust test-retest effects (Koolschijn et al. 2011; Zanto et al. 2014) and no significant change (Fonville et al. 2015; Mattfeld et al. 2016; Sanchez-Carrion et al. 2008) in healthy adults.

Supplementary material

11682_2019_94_MOESM1_ESM.docx (17 kb)
ESM 1 (DOCX 16 kb)


  1. Adams, J. H., Graham, D. I., Scott, G., Parker, L. S., & Doyle, D. (1980). Brain damage in fatal non-missile head injury. Journal of Clinical Pathology, 33, 1132–1145.CrossRefGoogle Scholar
  2. Aerts, H., Fias, W., Caeyenberghs, K., & Marinazzo, D. (2016). Brain networks under attack: Robustness properties and the impact of lesions. Brain, 139, 3063–3083.CrossRefGoogle Scholar
  3. Astafiev, S. V., Shulman, G. L., Metcalf, N. V., Rengachary, J., MacDonald, C. L., Harrington, D. L., Maruta, J., Shimony, J. S., Ghajar, J., Diwakar, M., Huang, M. X., Lee, R. R., & Corbetta, M. (2015). Abnormal white matter blood-oxygen-level-dependent signals in chronic mild traumatic brain injury. Journal of Neurotrauma, 32, 1254–1271.CrossRefGoogle Scholar
  4. Baldauf, D., & Desimone, R. (2014). Neural mechanisms of object-based attention. Science (New York, N.Y.), 344, 424–427.CrossRefGoogle Scholar
  5. Beck, D. M., & Kastner, S. (2007). Stimulus similarity modulates competitive interactions in human visual cortex. Journal of Vision, 7, 19.1–19.1912.Google Scholar
  6. Bonnelle, V., Ham, T. E., Leech, R., Kinnunen, K. M., Mehta, M. A., Greenwood, R. J., & Sharp, D. J. (2012). Salience network integrity predicts default mode network function after traumatic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 109, 4690–4695.CrossRefGoogle Scholar
  7. Bonnelle, V., Leech, R., Kinnunen, K. M., Ham, T. E., Beckmann, C. F., De Boissezon, X., Greenwood, R. J., & Sharp, D. J. (2011). Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. The Journal of neuroscience : the official journal of the Society for Neuroscience, 31, 13442–13451.CrossRefGoogle Scholar
  8. Castellanos, N. P., Leyva, I., Buldu, J. M., Bajo, R., Paul, N., Cuesta, P., Ordonez, V. E., Pascua, C. L., Boccaletti, S., Maestu, F., & del-Pozo, F. (2011). Principles of recovery from traumatic brain injury: Reorganization of functional networks. Neuroimage, 55, 1189–1199.CrossRefGoogle Scholar
  9. Cerf, M., Thiruvengadam, N., Mormann, F., Kraskov, A., Quiroga, R. Q., Koch, C., & Fried, I. (2010). On-line, voluntary control of human temporal lobe neurons. Nature, 467, 1104–1108.CrossRefGoogle Scholar
  10. Chadick, J. Z., & Gazzaley, A. (2011). Differential coupling of visual cortex with default or frontal-parietal network based on goals. Nature Neuroscience, 14, 830–832.CrossRefGoogle Scholar
  11. Chen, A. J., Novakovic-Agopian, T., Nycum, T. J., Song, S., Turner, G. R., Hills, N. K., Rome, S., Abrams, G. M., & D'Esposito, M. (2011). Training of goal-directed attention regulation enhances control over neural processing for individuals with brain injury. Brain, 134, 1541–1554.CrossRefGoogle Scholar
  12. Chen, H., Epstein, J., & Stern, E. (2010). Neural plasticity after acquired brain injury: Evidence from functional neuroimaging. PM & R : The Journal of Injury, Function, and Rehabilitation, 2, S306–S312.CrossRefGoogle Scholar
  13. Cohen, E. H., & Tong, F. (2015). Neural mechanisms of object-based attention. Cerebral Cortex (New York, N.Y. : 1991), 25, 1080–1092.CrossRefGoogle Scholar
  14. Couperus, J. W., & Mangun, G. R. (2010). Signal enhancement and suppression during visual-spatial selective attention. Brain Research, 1359, 155–177.CrossRefGoogle Scholar
  15. Cui, Y., Liu, B., Luo, S., Zhen, X., Fan, M., Liu, T., Zhu, W., Park, M., Jiang, T., & Jin, J. S. (2011). Identification of conversion from mild cognitive impairment to Alzheimer's disease using multivariate predictors. PLoS One, 6, e21896.CrossRefGoogle Scholar
  16. Dall’Acqua, P., Johannes, S., Mica, L., Simmen, H. P., Glaab, R., Fandino, J., Schwendinger, M., Meier, C., Ulbrich, E. J., Müller, A., Baetschmann, H., Jäncke, L., & Hänggi, J. (2017). Functional and structural network recovery after mild traumatic brain injury: A 1-year longitudinal study. Frontiers in Human Neuroscience, 11.Google Scholar
  17. Desimone, R. (1998). Visual attention mediated by biased competition in extrastriate visual cortex. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 353, 1245–1255.CrossRefGoogle Scholar
  18. Dikmen, S., Machamer, J., & Temkin, N. (2017). Mild traumatic brain injury: Longitudinal study of cognition, functional status, and post-traumatic symptoms. Journal of Neurotrauma, 34, 1524–1530.CrossRefGoogle Scholar
  19. Edlow, B. L., Copen, W. A., Izzy, S., Bakhadirov, K., van der Kouwe, A., Glenn, M. B., Greenberg, S. M., Greer, D. M., & Wu, O. (2016). Diffusion tensor imaging in acute-to-subacute traumatic brain injury: A longitudinal analysis. BMC Neurology, 16, 2.CrossRefGoogle Scholar
  20. Fonville, L., Cohen Kadosh, K., Drakesmith, M., Dutt, A., Zammit, S., Mollon, J., Reichenberg, A., Lewis, G., Jones, D. K., & David, A. S. (2015). Psychotic experiences, working memory, and the developing brain: A multimodal neuroimaging study. Cerebral cortex (New York, N.Y. : 1991), 25, 4828–4838.CrossRefGoogle Scholar
  21. Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2006). Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proceedings of the National Academy of Sciences of the United States of America, 103, 10046–10051.CrossRefGoogle Scholar
  22. Gardner, R. C., & Yaffe, K. (2015). Epidemiology of mild traumatic brain injury and neurodegenerative disease. Molecular and Cellular Neurosciences, 66, 75–80.CrossRefGoogle Scholar
  23. Gazzaley, A., Cooney, J. W., McEvoy, K., Knight, R. T., & D'Esposito, M. (2005a). Top-down enhancement and suppression of the magnitude and speed of neural activity. Journal of Cognitive Neuroscience, 17, 507–517.CrossRefGoogle Scholar
  24. Gazzaley, A., Cooney, J. W., Rissman, J., & D'Esposito, M. (2005b). Top-down suppression deficit underlies working memory impairment in normal aging. Nature Neuroscience, 8, 1298–1300.CrossRefGoogle Scholar
  25. Han, K., Chapman, S. B., & Krawczyk, D. C. (2016). Disrupted intrinsic connectivity among default, dorsal attention, and Frontoparietal control networks in individuals with chronic traumatic brain injury. Journal of the International Neuropsychological Society : JINS, 22, 263–279.CrossRefGoogle Scholar
  26. Hayden, B. Y., & Gallant, J. L. (2013). Working memory and decision processes in visual area v4. Frontiers in Neuroscience, 7, 18.CrossRefGoogle Scholar
  27. Haynes, J. D. (2015). A primer on pattern-based approaches to fMRI: Principles, pitfalls, and perspectives. Neuron, 87, 257–270.CrossRefGoogle Scholar
  28. Hebart, M. N., Gorgen, K., & Haynes, J. D. (2014). The decoding toolbox (TDT): A versatile software package for multivariate analyses of functional imaging data. Frontiers in Neuroinformatics, 8, 88.Google Scholar
  29. Jilka, S. R., Scott, G., Ham, T., Pickering, A., Bonnelle, V., Braga, R. M., Leech, R., & Sharp, D. J. (2014). Damage to the salience network and interactions with the default mode network. The Journal of neuroscience : the official journal of the Society for Neuroscience, 34, 10798–10807.CrossRefGoogle Scholar
  30. Kelly, A. M., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2008). Competition between functional brain networks mediates behavioral variability. Neuroimage, 39, 527–537.CrossRefGoogle Scholar
  31. Koolschijn, P. C., Schel, M. A., de Rooij, M., Rombouts, S. A., & Crone, E. A. (2011). A three-year longitudinal functional magnetic resonance imaging study of performance monitoring and test-retest reliability from childhood to early adulthood. The Journal of neuroscience : the official journal of the Society for Neuroscience, 31, 4204–4212.CrossRefGoogle Scholar
  32. Kou, Z., & Iraji, A. (2014). Imaging brain plasticity after trauma. Neural Regeneration Research, 9, 693–700.CrossRefGoogle Scholar
  33. Lee, T. G., & D'Esposito, M. (2012). The dynamic nature of top-down signals originating from prefrontal cortex: A combined fMRI-TMS study. The Journal of neuroscience : the official journal of the Society for Neuroscience, 32, 15458–15466.CrossRefGoogle Scholar
  34. Leech, R., & Sharp, D. J. (2014). The role of the posterior cingulate cortex in cognition and disease. Brain, 137, 12–32.CrossRefGoogle Scholar
  35. Levine, B., Robertson, I. H., Clare, L., Carter, G., Hong, J., Wilson, B. A., Duncan, J., & Stuss, D. T. (2000). Rehabilitation of executive functioning: An experimental-clinical validation of goal management training. Journal of the International Neuropsychological Society : JINS, 6, 299–312.CrossRefGoogle Scholar
  36. Liang, X., Zou, Q., He, Y., & Yang, Y. (2016). Topologically reorganized connectivity architecture of default-mode, executive-control, and salience networks across working memory task loads. Cerebral cortex (New York, N.Y. : 1991), 26, 1501–1511.CrossRefGoogle Scholar
  37. Lin, J. W., Lin, C. M., Tsai, J. T., Hung, K. S., Hung, C. C., & Chiu, W. T. (2008). Neurotrauma research in Taiwan. Acta Neurochirurgica. Supplement, 101, 113–117.CrossRefGoogle Scholar
  38. Maruishi, M., Miyatani, M., Nakao, T., & Muranaka, H. (2007). Compensatory cortical activation during performance of an attention task by patients with diffuse axonal injury: A functional magnetic resonance imaging study. Journal of Neurology, Neurosurgery, and Psychiatry, 78, 168–173.CrossRefGoogle Scholar
  39. Mattfeld, A. T., Whitfield-Gabrieli, S., Biederman, J., Spencer, T., Brown, A., Fried, R., & Gabrieli, J. D. (2016). Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain. Neuro Image Clinical, 10, 274–282.Google Scholar
  40. Mayer, A. R., Mannell, M. V., Ling, J., Gasparovic, C., & Yeo, R. A. (2011). Functional connectivity in mild traumatic brain injury. Human Brain Mapping, 32, 1825–1835.CrossRefGoogle Scholar
  41. Miller, B. T., Vytlacil, J., Fegen, D., Pradhan, S., & D'Esposito, M. (2011). The prefrontal cortex modulates category selectivity in human extrastriate cortex. Journal of Cognitive Neuroscience, 23, 1–10.CrossRefGoogle Scholar
  42. Mott, T. F., McConnon, M. L., & Rieger, B. P. (2012). Subacute to chronic mild traumatic brain injury. American Family Physician, 86, 1045–1051.Google Scholar
  43. Nguyen, R., Fiest, K. M., McChesney, J., Kwon, C. S., Jette, N., Frolkis, A. D., Atta, C., Mah, S., Dhaliwal, H., Reid, A., Pringsheim, T., Dykeman, J., & Gallagher, C. (2016). The international incidence of traumatic brain injury: A systematic review and meta-analysis. The Canadian Journal of Neurological Sciences. Le journal canadien des sciences neurologiques, 43, 774–785.CrossRefGoogle Scholar
  44. Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25, 46–59.CrossRefGoogle Scholar
  45. Peters, J. C., Roelfsema, P. R., & Goebel, R. (2012). Task-relevant and accessory items in working memory have opposite effects on activity in extrastriate cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience, 32, 17003–17011.CrossRefGoogle Scholar
  46. Reddy, L., Kanwisher, N. G., & VanRullen, R. (2009). Attention and biased competition in multi-voxel object representations. Proceedings of the National Academy of Sciences of the United States of America, 106, 21447–21452.CrossRefGoogle Scholar
  47. Sanchez-Carrion, R., Fernandez-Espejo, D., Junque, C., Falcon, C., Bargallo, N., Roig, T., Bernabeu, M., Tormos, J. M., & Vendrell, P. (2008). A longitudinal fMRI study of working memory in severe TBI patients with diffuse axonal injury. Neuroimage, 43, 421–429.CrossRefGoogle Scholar
  48. Seiss, E., Driver, J., & Eimer, M. (2009). Effects of attentional filtering demands on preparatory ERPs elicited in a spatial cueing task. Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology, 120, 1087–1095.CrossRefGoogle Scholar
  49. Shi, H. Y., Hwang, S. L., Lee, I. C., Chen, I. T., Lee, K. T., & Lin, C. L. (2014). Trends and outcome predictors after traumatic brain injury surgery: A nationwide population-based study in Taiwan. Journal of Neurosurgery, 121, 1323–1330.CrossRefGoogle Scholar
  50. Sidaros, A., Engberg, A. W., Sidaros, K., Liptrot, M. G., Herning, M., Petersen, P., Paulson, O. B., Jernigan, T. L., & Rostrup, E. (2008). Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: A longitudinal study. Brain, 131, 559–572.CrossRefGoogle Scholar
  51. Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences of the United States of America, 105, 12569–12574.CrossRefGoogle Scholar
  52. Strangman, G. E., O'Neil-Pirozzi, T. M., Goldstein, R., Kelkar, K., Katz, D. I., Burke, D., Rauch, S. L., Savage, C. R., & Glenn, M. B. (2008). Prediction of memory rehabilitation outcomes in traumatic brain injury by using functional magnetic resonance imaging. Archives of Physical Medicine and Rehabilitation, 89, 974–981.CrossRefGoogle Scholar
  53. Strappini, F., Galati, G., Martelli, M., Di Pace, E., & Pitzalis, S. (2017). Perceptual integration and attention in human extrastriate cortex. Scientific Reports, 7, 14848.CrossRefGoogle Scholar
  54. van der Horn, H. J., Liemburg, E. J., Scheenen, M. E., de Koning, M. E., Spikman, J. M., & van der Naalt, J. (2016). Post-concussive complaints after mild traumatic brain injury associated with altered brain networks during working memory performance. Brain Imaging and Behavior, 10, 1243–1253.CrossRefGoogle Scholar
  55. Weissman, D. H., Roberts, K. C., Visscher, K. M., & Woldorff, M. G. (2006). The neural bases of momentary lapses in attention. Nature Neuroscience, 9, 971–978.CrossRefGoogle Scholar
  56. Woo, C. W., Chang, L. J., Lindquist, M. A., & Wager, T. D. (2017). Building better biomarkers: Brain models in translational neuroimaging. Nature Neuroscience, 20, 365–377.CrossRefGoogle Scholar
  57. Yoon, J. H., Curtis, C. E., & D'Esposito, M. (2006). Differential effects of distraction during working memory on delay-period activity in the prefrontal cortex and the visual association cortex. Neuroimage, 29, 1117–1126.CrossRefGoogle Scholar
  58. Zanto, T. P., Pa, J., & Gazzaley, A. (2014). Reliability measures of functional magnetic resonance imaging in a longitudinal evaluation of mild cognitive impairment. Neuroimage, 84, 443–452.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shun-Chin Jim Wu
    • 1
  • Lisanne M. Jenkins
    • 2
  • Alexandra C. Apple
    • 2
  • Julie Petersen
    • 2
  • Furen Xiao
    • 3
  • Lei Wang
    • 2
  • Fan-pei Gloria Yang
    • 4
    Email author
  1. 1.National Defense Medical Center, School of MedicineTaipeiTaiwan
  2. 2.Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoUSA
  3. 3.National Taiwan University HospitalTaipeiTaiwan
  4. 4.Center for Cognition & Mind ScienceNational Tsinghua UniversityHsinchuTaiwan

Personalised recommendations