Advertisement

The cortical distribution of first and second language in the right hemisphere of bilinguals – an exploratory study by repetitive navigated transcranial magnetic stimulation

  • Lorena Tussis
  • Nico Sollmann
  • Tobias Boeckh-Behrens
  • Bernhard Meyer
  • Sandro M. KriegEmail author
ORIGINAL RESEARCH
  • 29 Downloads

Abstract

First language (L1) and second language (L2) processing in bilinguals is not yet fully understood, especially not when considering the non-dominant hemisphere. Ten healthy, right-handed volunteers underwent language mapping of the right hemisphere by repetitive navigated transcranial magnetic stimulation and an object-naming task in their L1 and L2. All elicited naming errors together, no responses, and all errors without hesitation were analyzed separately for cortical distributions of error rates (ERs: number of errors divided by the number of applied stimulations). No significant differences (p > 0.05) were found in ERs between the L1 and L2 for all errors (L1 20.6 ± 14.8%, L2 15.4 ± 11.2%), no responses (L1 13.5 ± 10.9%, L2 9.2 ± 10.8%), and all errors without hesitation (L1 14.4 ± 11.2%, L2 10.8 ± 10.0%). The areas that showed high ERs for the L1 included the dorsal precentral and middle precentral gyrus, whereas the triangular inferior frontal gyrus showed high ERs for the L2. When focusing on error distributions per single stimulation points, differences in ERs between the L1 and L2 were initially observed for stimulation within the angular and middle middle frontal gyrus, but did not withstand correction for the false discovery rate (FDR-corrected p > 0.05). In conclusion, this exploratory study shows the feasibility of rTMS to the right hemisphere for language mapping and reveals cortical areas involved in L1 and L2 processing, but has to be followed up by larger studies enrolling more homogeneous cohorts.

Keywords

Bilingualism Cortical mapping Navigated brain stimulation Object naming Right hemisphere Transcranial magnetic stimulation 

Abbreviations

CPS

Cortical parcellation system

DTI FT

Diffusion tensor imaging fiber tracking

EHI

Edinburgh Handedness Inventory

ER

Error rate

FDR

False discovery rate

L1

First language

L2

Second language

LH

Left hemisphere

MRI

Magnetic resonance imaging

RH

Right hemisphere

RMT

Resting motor threshold

rTMS

Repetitive navigated transcranial magnetic stimulation

VAS

Visual analogue scale

Notes

Acknowledgements

We thank Dr. Lucia Albers for her statistical advice.

Funding

The study was primarily financed by institutional grants from the Department of Neurosurgery and the Department of Neuroradiology.

Compliance with ethical standards

Conflict of interest

SK is consultant for Brainlab AG (Munich, Germany) and Nexstim Plc (Helsinki, Finland). NS received honoraria from Nexstim Plc (Helsinki, Finland).

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Albanese, J. F. (1985). Language lateralization in English-French bilinguals. Brain and Language, 24(2), 284–296.Google Scholar
  2. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B: Methodological, 57(1), 289–300.Google Scholar
  3. Bloch, C., Kaiser, A., Kuenzli, E., Zappatore, D., Haller, S., Franceschini, R., Luedi, G., Radue, E. W., & Nitsch, C. (2009). The age of second language acquisition determines the variability in activation elicited by narration in three languages in Broca's and Wernicke's area. Neuropsychologia, 47(3), 625–633.  https://doi.org/10.1016/j.neuropsychologia.2008.11.009.Google Scholar
  4. Blom, E., Kuntay, A. C., Messer, M., Verhagen, J., & Leseman, P. (2014). The benefits of being bilingual: Working memory in bilingual Turkish-Dutch children. Journal of Experimental Child Psychology, 128, 105–119.  https://doi.org/10.1016/j.jecp.2014.06.007.Google Scholar
  5. Broca, P. (1861). Remarks on the seat of the Faculty of Articulated Language, following an observation of Aphemia (loss of speech). Bulletin de la Société Anatomique, 6, 330–357.Google Scholar
  6. Buckner, R. L., Raichle, M. E., & Petersen, S. E. (1995). Dissociation of human prefrontal cortical areas across different speech production tasks and gender groups. Journal of Neurophysiology, 74(5), 2163–2173.Google Scholar
  7. Calabrese, P., Neufeld, H., Falk, A., Markowitsch, H. J., Muller, C., Heuser, L., Gehlen, W., & Durwen, H. F. (2001). Word generation in bilinguals--fMRI study with implications for language and memory processes. Fortschritte der Neurologie-Psychiatrie, 69(1), 42–49.  https://doi.org/10.1055/s-2001-10467.Google Scholar
  8. Chang, E. F., Raygor, K. P., & Berger, M. S. (2015). Contemporary model of language organization: An overview for neurosurgeons. Journal of Neurosurgery, 122(2), 250–261.  https://doi.org/10.3171/2014.10.JNS132647.Google Scholar
  9. Chee, M. W., Tan, E. W., & Thiel, T. (1999). Mandarin and English single word processing studied with functional magnetic resonance imaging. The Journal of neuroscience : the official journal of the Society for Neuroscience, 19(8), 3050–3056.Google Scholar
  10. Chee, M. W., Hon, N., Lee, H. L., & Soon, C. S. (2001). Relative language proficiency modulates BOLD signal change when bilinguals perform semantic judgments. Blood oxygen level dependent. NeuroImage, 13(6 Pt 1), 1155–1163.  https://doi.org/10.1006/nimg.2001.0781.Google Scholar
  11. Chen, J. E., & Glover, G. H. (2015). Functional magnetic resonance imaging methods. Neuropsychology Review, 25(3), 289–313.  https://doi.org/10.1007/s11065-015-9294-9.Google Scholar
  12. Cheung, M. C., Chan, A. S., Chan, Y. L., & Lam, J. M. (2006). Language lateralization of Chinese-English bilingual patients with temporal lobe epilepsy: a functional MRI study. Neuropsychology, 20(5), 589–597.  https://doi.org/10.1037/0894-4105.20.5.589.Google Scholar
  13. Concerto, C., Infortuna, C., Chusid, E., Coira, D., Babayev, J., Metwaly, R., Naenifard, H., Aguglia, E., & Battaglia, F. (2017). Caffeinated energy drink intake modulates motor circuits at rest, before and after a movement. Physiology & Behavior, 179, 361–368.  https://doi.org/10.1016/j.physbeh.2017.07.013.Google Scholar
  14. Corina, D. P., Gibson, E. K., Martin, R., Poliakov, A., Brinkley, J., & Ojemann, G. A. (2005). Dissociation of action and object naming: evidence from cortical stimulation mapping. Human Brain Mapping, 24(1), 1–10.  https://doi.org/10.1002/hbm.20063.Google Scholar
  15. Corina, D. P., Loudermilk, B. C., Detwiler, L., Martin, R. F., Brinkley, J. F., & Ojemann, G. (2010). Analysis of naming errors during cortical stimulation mapping: implications for models of language representation. Brain and Language, 115(2), 101–112.  https://doi.org/10.1016/j.bandl.2010.04.001.Google Scholar
  16. D'Anselmo, A., Reiterer, S., Zuccarini, F., Tommasi, L., & Brancucci, A. (2013). Hemispheric asymmetries in bilinguals: tongue similarity affects lateralization of second language. Neuropsychologia, 51(7), 1187–1194.  https://doi.org/10.1016/j.neuropsychologia.2013.03.016.Google Scholar
  17. de Carvalho, M., Marcelino, E., & de Mendonca, A. (2010). Electrophysiological studies in healthy subjects involving caffeine. Journal of Alzheimer's Disease, 20(Suppl 1), S63–S69.  https://doi.org/10.3233/JAD-2010-1377.Google Scholar
  18. Dehaene, S., Dupoux, E., Mehler, J., Cohen, L., Paulesu, E., Perani, D., van de Moortele, P. F., Lehericy, S., & Le Bihan, D. (1997). Anatomical variability in the cortical representation of first and second language. Neuroreport, 8(17), 3809–3815.Google Scholar
  19. Epstein, C. M., Lah, J. J., Meador, K., Weissman, J. D., Gaitan, L. E., & Dihenia, B. (1996). Optimum stimulus parameters for lateralized suppression of speech with magnetic brain stimulation. Neurology, 47(6), 1590–1593.Google Scholar
  20. Fedorenko, E., & Thompson-Schill, S. L. (2014). Reworking the language network. Trends in Cognitive Sciences, 18(3), 120–126.  https://doi.org/10.1016/j.tics.2013.12.006.Google Scholar
  21. Friederici, A. D., & Gierhan, S. M. (2013). The language network. Current Opinion in Neurobiology, 23(2), 250–254.  https://doi.org/10.1016/j.conb.2012.10.002.Google Scholar
  22. Hull, R., & Vaid, J. (2007). Bilingual language lateralization: a meta-analytic tale of two hemispheres. Neuropsychologia, 45(9), 1987–2008.  https://doi.org/10.1016/j.neuropsychologia.2007.03.002.Google Scholar
  23. Ibrahim, R. (2009). Selective deficit of second language: a case study of a brain-damaged Arabic-Hebrew bilingual patient. Behavioral and Brain Functions : BBF, 5, 17.  https://doi.org/10.1186/1744-9081-5-17.Google Scholar
  24. Illes, J., Francis, W. S., Desmond, J. E., Gabrieli, J. D., Glover, G. H., Poldrack, R., Lee, C. J., & Wagner, A. D. (1999). Convergent cortical representation of semantic processing in bilinguals. Brain and Language, 70(3), 347–363.  https://doi.org/10.1006/brln.1999.2186.Google Scholar
  25. Ilmoniemi, R. J., Ruohonen, J., & Karhu, J. (1999). Transcranial magnetic stimulation--a new tool for functional imaging of the brain. Critical Reviews in Biomedical Engineering, 27(3–5), 241–284.Google Scholar
  26. Kim, K. H., Relkin, N. R., Lee, K. M., & Hirsch, J. (1997). Distinct cortical areas associated with native and second languages. Nature, 388(6638), 171–174.  https://doi.org/10.1038/40623.Google Scholar
  27. Klein, D., Mok, K., Chen, J. K., & Watkins, K. E. (2014). Age of language learning shapes brain structure: a cortical thickness study of bilingual and monolingual individuals. Brain and Language, 131, 20–24.  https://doi.org/10.1016/j.bandl.2013.05.014.Google Scholar
  28. Kohnert, K. (2010). Bilingual children with primary language impairment: issues, evidence and implications for clinical actions. Journal of Communication Disorders, 43(6), 456–473.  https://doi.org/10.1016/j.jcomdis.2010.02.002.Google Scholar
  29. Kovelman, I., Shalinsky, M. H., Berens, M. S., & Petitto, L. A. (2008). Shining new light on the brain's "bilingual signature": a functional near infrared spectroscopy investigation of semantic processing. NeuroImage, 39(3), 1457–1471.  https://doi.org/10.1016/j.neuroimage.2007.10.017.Google Scholar
  30. Krieg, S. M., Shiban, E., Buchmann, N., Gempt, J., Foerschler, A., Meyer, B., & Ringel, F. (2012). Utility of presurgical navigated transcranial magnetic brain stimulation for the resection of tumors in eloquent motor areas. Journal of Neurosurgery, 116(5), 994–1001.  https://doi.org/10.3171/2011.12.JNS111524.Google Scholar
  31. Krieg, S. M., Sollmann, N., Hauck, T., Ille, S., Foerschler, A., Meyer, B., & Ringel, F. (2013). Functional language shift to the right hemisphere in patients with language-eloquent brain tumors. PLoS One, 8(9), e75403.  https://doi.org/10.1371/journal.pone.0075403.Google Scholar
  32. Krieg, S. M., Tarapore, P. E., Picht, T., Tanigawa, N., Houde, J., Sollmann, N., Meyer, B., Vajkoczy, P., Berger, M. S., Ringel, F., & Nagarajan, S. (2014). Optimal timing of pulse onset for language mapping with navigated repetitive transcranial magnetic stimulation. NeuroImage, 100, 219–236.  https://doi.org/10.1016/j.neuroimage.2014.06.016.Google Scholar
  33. Krieg, S. M., Sollmann, N., Tanigawa, N., Foerschler, A., Meyer, B., & Ringel, F. (2016). Cortical distribution of speech and language errors investigated by visual object naming and navigated transcranial magnetic stimulation. Brain Structure & Function, 221(4), 2259–2286.  https://doi.org/10.1007/s00429-015-1042-7.Google Scholar
  34. Langley, G. B., & Sheppeard, H. (1985). The visual analogue scale: its use in pain measurement. Rheumatology International, 5(4), 145–148.Google Scholar
  35. Lioumis, P., Zhdanov, A., Makela, N., Lehtinen, H., Wilenius, J., Neuvonen, T., Hannula, H., Deletis, V., Picht, T., & Makela, J. P. (2012). A novel approach for documenting naming errors induced by navigated transcranial magnetic stimulation. Journal of Neuroscience Methods, 204(2), 349–354.  https://doi.org/10.1016/j.jneumeth.2011.11.003.Google Scholar
  36. Lucas, T. H., 2nd, McKhann, G. M., 2nd, & Ojemann, G. A. (2004). Functional separation of languages in the bilingual brain: a comparison of electrical stimulation language mapping in 25 bilingual patients and 117 monolingual control patients. Journal of Neurosurgery, 101(3), 449–457.  https://doi.org/10.3171/jns.2004.101.3.0449.Google Scholar
  37. Negwer, C., Ille, S., Hauck, T., Sollmann, N., Maurer, S., Kirschke, J. S., Ringel, F., Meyer, B., & Krieg, S. M. (2016). Visualization of subcortical language pathways by diffusion tensor imaging fiber tracking based on rTMS language mapping. Brain Imaging and Behavior, 11, 899–914.  https://doi.org/10.1007/s11682-016-9563-0.Google Scholar
  38. Ojemann, G. A., & Whitaker, H. A. (1978). The bilingual brain. Archives of Neurology, 35(7), 409–412.Google Scholar
  39. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.Google Scholar
  40. Pascual-Leone, A., Gates, J. R., & Dhuna, A. (1991). Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation. Neurology, 41(5), 697–702.Google Scholar
  41. Picht, T., Strack, V., Schulz, J., Zdunczyk, A., Frey, D., Schmidt, S., & Vajkoczy, P. (2012). Assessing the functional status of the motor system in brain tumor patients using transcranial magnetic stimulation. Acta Neurochirurgica, 154(11), 2075–2081.  https://doi.org/10.1007/s00701-012-1494-y.Google Scholar
  42. Picht, T., Krieg, S. M., Sollmann, N., Rosler, J., Niraula, B., Neuvonen, T., Savolainen, P., Lioumis, P., Makela, J. P., Deletis, V., Meyer, B., Vajkoczy, P., & Ringel, F. (2013). A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during awake surgery. Neurosurgery, 72(5), 808–819.  https://doi.org/10.1227/NEU.0b013e3182889e01.Google Scholar
  43. Pouratian, N., Bookheimer, S. Y., O'Farrell, A. M., Sicotte, N. L., Cannestra, A. F., Becker, D., & Toga, A. W. (2000). Optical imaging of bilingual cortical representations. Case report. Journal of Neurosurgery, 93(4), 676–681.  https://doi.org/10.3171/jns.2000.93.4.0676.Google Scholar
  44. Price, D. D., McGrath, P. A., Rafii, A., & Buckingham, B. (1983). The validation of visual analogue scales as ratio scale measures for chronic and experimental pain. Pain, 17(1), 45–56.Google Scholar
  45. Raffa, G., Bahrend, I., Schneider, H., Faust, K., Germano, A., Vajkoczy, P., & Picht, T. (2016). A novel technique for region and linguistic specific nTMS-based DTI fiber tracking of language pathways in brain tumor patients. Frontiers in Neuroscience, 10, 552.  https://doi.org/10.3389/fnins.2016.00552.Google Scholar
  46. Rosler, J., Niraula, B., Strack, V., Zdunczyk, A., Schilt, S., Savolainen, P., Lioumis, P., Makela, J., Vajkoczy, P., Frey, D., & Picht, T. (2014). Language mapping in healthy volunteers and brain tumor patients with a novel navigated TMS system: evidence of tumor-induced plasticity. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 125(3), 526–536.  https://doi.org/10.1016/j.clinph.2013.08.015.Google Scholar
  47. Rossini, P. M., Barker, A. T., Berardelli, A., Caramia, M. D., Caruso, G., Cracco, R. Q., Dimitrijevic, M. R., Hallett, M., Katayama, Y., Lucking, C. H., et al. (1994). Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalography and Clinical Neurophysiology, 91(2), 79–92.Google Scholar
  48. Rossini, P. M., Burke, D., Chen, R., Cohen, L. G., Daskalakis, Z., Di Iorio, R., Di Lazzaro, V., Ferreri, F., Fitzgerald, P. B., George, M. S., Hallett, M., Lefaucheur, J. P., Langguth, B., Matsumoto, H., Miniussi, C., Nitsche, M. A., Pascual-Leone, A., Paulus, W., Rossi, S., Rothwell, J. C., Siebner, H. R., Ugawa, Y., Walsh, V., & Ziemann, U. (2015). Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 126(6), 1071–1107.  https://doi.org/10.1016/j.clinph.2015.02.001.Google Scholar
  49. Roux, F. E., & Tremoulet, M. (2002). Organization of language areas in bilingual patients: a cortical stimulation study. Journal of Neurosurgery, 97(4), 857–864.  https://doi.org/10.3171/jns.2002.97.4.0857.Google Scholar
  50. Ruohonen, J., & Karhu, J. (2010). Navigated transcranial magnetic stimulation. Neurophysiologie Clinique = Clinical Neurophysiology, 40(1), 7–17.  https://doi.org/10.1016/j.neucli.2010.01.006.Google Scholar
  51. Soares, C. (1984). Left-hemisphere language lateralization in bilinguals: use of the concurrent activities paradigm. Brain and Language, 23(1), 86–96.Google Scholar
  52. Sollmann, N., Hauck, T., Hapfelmeier, A., Meyer, B., Ringel, F., & Krieg, S. M. (2013). Intra- and interobserver variability of language mapping by navigated transcranial magnetic brain stimulation. BMC Neuroscience, 14, 150.  https://doi.org/10.1186/1471-2202-14-150.Google Scholar
  53. Sollmann, N., Tanigawa, N., Ringel, F., Zimmer, C., Meyer, B., & Krieg, S. M. (2014). Language and its right-hemispheric distribution in healthy brains: an investigation by repetitive transcranial magnetic stimulation. NeuroImage, 102(Pt 2), 776–788.  https://doi.org/10.1016/j.neuroimage.2014.09.002.Google Scholar
  54. Sollmann, N., Giglhuber, K., Tussis, L., Meyer, B., Ringel, F., & Krieg, S. M. (2015a). nTMS-based DTI fiber tracking for language pathways correlates with language function and aphasia - a case report. Clinical Neurology and Neurosurgery, 136, 25–28.  https://doi.org/10.1016/j.clineuro.2015.05.023.Google Scholar
  55. Sollmann, N., Ille, S., Obermueller, T., Negwer, C., Ringel, F., Meyer, B., & Krieg, S. M. (2015b). The impact of repetitive navigated transcranial magnetic stimulation coil positioning and stimulation parameters on human language function. European Journal of Medical Research, 20(1), 47.  https://doi.org/10.1186/s40001-015-0138-0.Google Scholar
  56. Sollmann, N., Goblirsch-Kolb, M. F., Ille, S., Butenschoen, V. M., Boeckh-Behrens, T., Meyer, B., Ringel, F., & Krieg, S. M. (2016a). Comparison between electric-field-navigated and line-navigated TMS for cortical motor mapping in patients with brain tumors. Acta Neurochirurgica, 158(12), 2277–2289.  https://doi.org/10.1007/s00701-016-2970-6.Google Scholar
  57. Sollmann, N., Negwer, C., Ille, S., Maurer, S., Hauck, T., Kirschke, J. S., Ringel, F., Meyer, B., & Krieg, S. M. (2016b). Feasibility of nTMS-based DTI fiber tracking of language pathways in neurosurgical patients using a fractional anisotropy threshold. Journal of Neuroscience Methods, 267, 45–54.  https://doi.org/10.1016/j.jneumeth.2016.04.002.Google Scholar
  58. Sollmann, N., Fuss-Ruppenthal, S., Zimmer, C., Meyer, B., & Krieg, S. M. (2018a). Investigating stimulation protocols for language mapping by repetitive navigated transcranial magnetic stimulation. Frontiers in Behavioral Neuroscience, 12, 197.  https://doi.org/10.3389/fnbeh.2018.00197.Google Scholar
  59. Sollmann, N., Kelm, A., Ille, S., Schroder, A., Zimmer, C., Ringel, F., Meyer, B., & Krieg, S. M. (2018b). Setup presentation and clinical outcome analysis of treating highly language-eloquent gliomas via preoperative navigated transcranial magnetic stimulation and tractography. Neurosurgical Focus, 44(6), E2.  https://doi.org/10.3171/2018.3.FOCUS1838.Google Scholar
  60. Tarapore, P. E., Findlay, A. M., Honma, S. M., Mizuiri, D., Houde, J. F., Berger, M. S., & Nagarajan, S. S. (2013). Language mapping with navigated repetitive TMS: proof of technique and validation. NeuroImage, 82, 260–272.  https://doi.org/10.1016/j.neuroimage.2013.05.018.Google Scholar
  61. Tussis, L., Sollmann, N., Boeckh-Behrens, T., Meyer, B., & Krieg, S. M. (2017). Identifying cortical first and second language sites via navigated transcranial magnetic stimulation of the left hemisphere in bilinguals. Brain and Language, 168, 106–116.  https://doi.org/10.1016/j.bandl.2017.01.011.Google Scholar
  62. Wassermann, E. M., Blaxton, T. A., Hoffman, E. A., Berry, C. D., Oletsky, H., Pascual-Leone, A., & Theodore, W. H. (1999). Repetitive transcranial magnetic stimulation of the dominant hemisphere can disrupt visual naming in temporal lobe epilepsy patients. Neuropsychologia, 37(5), 537–544.Google Scholar
  63. Ziemann, U., Lonnecker, S., & Paulus, W. (1995). Inhibition of human motor cortex by ethanol. A transcranial magnetic stimulation study. Brain : a Journal of Neurology, 118(Pt 6), 1437–1446.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Neurosurgery, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
  2. 2.TUM-Neuroimaging Center, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
  3. 3.Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany

Personalised recommendations