Advertisement

Plasticity of the resting-state brain: static and dynamic functional connectivity change induced by divergent thinking training

  • Jiangzhou Sun
  • Qinglin Zhang
  • Yu Li
  • Jie Meng
  • Qunlin Chen
  • Wenjing Yang
  • Dongtao Wei
  • Jiang QiuEmail author
ORIGINAL RESEARCH
  • 45 Downloads

Abstract

Creativity is very important and is linked to almost all areas of our everyday life. Improving creativity brings great benefits. Various strategies and training paradigms have been used to stimulate creative thinking. These training approaches have been confirmed to be effective. However, whether or not training can reshape the resting-state brain is still unclear. The present study examined whether or not the divergent thinking training intervention can reshape the resting-state brain functional connectivity (FC). Static seed-based and dynamic approaches were used to explore this problem. Results demonstrate significant changes in static and dynamic FCs. FCs, such as dorsal anterior cingulate cortex-inferior parietal lobule, dorsal anterior cingulate cortex-precuneus and left and right dorsolateral prefrontal cortex, was significantly improved through the training. Furthermore, the temporal variability of the supplementary motor area and middle temporal gyrus was improved. These results indicate that divergent thinking training may lead to resting-state brain plasticity. Considering the role of these regions in brain networks, the present study further confirms the close relationship between the brain networks’ dynamic interactions and divergent thinking processes.

Keywords

Plasticity Resting-state Functional connectivity Divergent thinking Training 

Notes

Acknowledgments

This research was supported by the National Natural Science Foundation of China (31470981; 31571137; 31500885; 31600878; 31771231), Project of the National Defense Science and Technology Innovation Special Zone, Chang Jiang Scholars Program, National Outstanding Young People Plan, the Program for the Top Young Talents by Chongqing, the Fundamental Research Funds for the Central Universities (SWU1709568, SWU1609177), the Postgraduate Science Innovation Foundation of Chongqing (CYB18109), Natural Science Foundation of Chongqing (cstc2015jcyjA10106), Fok Ying Tung Education Foundation (151023), the Research Program Funds of the Collaborative Innovation Center of Assessment toward Basic Education Quality at Beijing Normal University.

Compliance with ethical standards

Conflict of interest

The authors declare no competing interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Brain Imaging Center Institutional Review Board of Southwest China University and with the standards of the Declaration of Helsinki (1991).

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Abraham, A., Pieritz, K., Thybusch, K., Rutter, B., Kroger, S., Schweckendiek, J., … Hermann, C. (2012). Creativity and the brain: Uncovering the neural signature of conceptual expansion. Neuropsychologia, 50(8), 1906–1917.  https://doi.org/10.1016/j.neuropsychologia.2012.04.015.
  2. Andreasen, N. C., & Ramchandran, K. (2012). Creativity in art and science: Are there two cultures? Dialogues in Clinical Neuroscience, 14(1), 49–54.Google Scholar
  3. Badre, D., Poldrack, R. A., Pare-Blagoev, E. J., Insler, R. Z., & Wagner, A. D. (2005). Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron, 47(6), 907–918.  https://doi.org/10.1016/j.neuron.2005.07.023.CrossRefGoogle Scholar
  4. Bashwiner, D. M., Wertz, C. J., Flores, R. A., & Jung, R. E. (2016). Musical creativity "revealed" in brain structure: Interplay between motor, default mode, and limbic networks. Scientific Reports, 6, 20482.  https://doi.org/10.1038/srep20482.CrossRefGoogle Scholar
  5. Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., … Neubauer, A. C. (2014). Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64, 92–98.Google Scholar
  6. Beaty, R. E., Benedek, M., Kaufman, S. B., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, 10964.  https://doi.org/10.1038/srep10964.CrossRefGoogle Scholar
  7. Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20(2), 87–95.  https://doi.org/10.1016/j.tics.2015.10.004.
  8. Beaty, R. E., Chen, Q., Christensen, A. P., Qiu, J., Silvia, P. J., & Schacter, D. L. (2018a). Brain networks of the imaginative mind: Dynamic functional connectivity of default and cognitive control networks relates to openness to experience. Human Brain Mapping, 39(2), 811–821.  https://doi.org/10.1002/hbm.23884.CrossRefGoogle Scholar
  9. Beaty, R. E., Kenett, Y. N., Christensen, A. P., Rosenberg, M. D., Benedek, M., Chen, Q., … Silvia, P. J. (2018b). Robust prediction of individual creative ability from brain functional connectivity. Proceedings of the National Academy of Sciences of the United States of America, 115(5), 1087–1092.  https://doi.org/10.1073/pnas.1713532115.
  10. Bezzola, L., Merillat, S., Gaser, C., & Jancke, L. (2011). Training-induced neural plasticity in golf novices. The Journal of Neuroscience, 31(35), 12444–12448.  https://doi.org/10.1523/JNEUROSCI.1996-11.2011.CrossRefGoogle Scholar
  11. Braun, U., Schafer, A., Walter, H., Erk, S., Romanczuk-Seiferth, N., Haddad, L., … Bassett, D. S. (2015). Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proceedings of the National Academy of Sciences of the United States of America, 112(37), 11678–11683.  https://doi.org/10.1073/pnas.1422487112.
  12. Chen, Q., Yang, W., Li, W., Wei, D., Li, H., Lei, Q., … Qiu, J. (2014). Association of creative achievement with cognitive flexibility by a combined voxel-based morphometry and resting-state functional connectivity study. Neuroimage, 102, 474–483.Google Scholar
  13. Chen, T., Cai, W., Ryali, S., Supekar, K., & Menon, V. (2016). Distinct global brain dynamics and spatiotemporal Organization of the Salience Network. PLoS Biology, 14(6), e1002469.  https://doi.org/10.1371/journal.pbio.1002469.CrossRefGoogle Scholar
  14. Colcombe, S. J., Erickson, K. I., Scalf, P. E., Kim, J. S., Prakash, R., McAuley, E., … Kramer, A. F. (2006). Aerobic exercise training increases brain volume in aging humans. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 61(11), 1166–1170.Google Scholar
  15. Colom, R., Martinez, K., Burgaleta, M., Roman, F. J., Garcia-Garcia, D., Gunter, J. L., … Thompson, P. M. (2016). Gray matter volumetric changes with a challenging adaptive cognitive training program based on the dual n-back task. Personality and Individual Differences, 98, 127–132.  https://doi.org/10.1016/j.paid.2016.03.087.
  16. Cordes, D., Haughton, V. M., Arfanakis, K., Carew, J. D., Turski, P. A., Moritz, C. H., et al. (2001). Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" data. American Journal of Neuroradiology, 22(7), 1326–1333.Google Scholar
  17. de Manzano, O., & Ullen, F. (2012). Activation and connectivity patterns of the presupplementary and dorsal premotor areas during free improvisation of melodies and rhythms. Neuroimage, 63(1), 272–280.  https://doi.org/10.1016/j.neuroimage.2012.06.024.CrossRefGoogle Scholar
  18. Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136(5), 822–848.  https://doi.org/10.1037/a0019749.CrossRefGoogle Scholar
  19. Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & May, A. (2004). Neuroplasticity: Changes in grey matter induced by training. Nature, 427(6972), 311–312.  https://doi.org/10.1038/427311a.CrossRefGoogle Scholar
  20. Dugosh, K. L., Paulus, P. B., Roland, E. J., & Yang, H.-C. (2000). Cognitive stimulation in brainstorming. Journal of Personality and Social Psychology, 79(5), 722–735.CrossRefGoogle Scholar
  21. Erhard, K., Kessler, F., Neumann, N., Ortheil, H.-J., & Lotze, M. (2014). Professional training in creative writing is associated with enhanced fronto-striatal activity in a literary text continuation task. Neuroimage, 100, 15–23.CrossRefGoogle Scholar
  22. Fink, A., & Benedek, M. (2014). EEG alpha power and creative ideation. Neuroscience and Biobehavioral Reviews, 44, 111–123.  https://doi.org/10.1016/j.neubiorev.2012.12.002.CrossRefGoogle Scholar
  23. Fink, A., Grabner, R. H., Benedek, M., & Neubauer, A. C. (2006). Divergent thinking training is related to frontal electroencephalogram alpha synchronization. European Journal of Neuroscience, 23(8), 2241–2246.CrossRefGoogle Scholar
  24. Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., … Neubauer, A. C. (2009a). The creative brain: Investigation of brain activity during creative problem solving by means of EEG and FMRI. Human Brain Mapping, 30(3), 734–748.  https://doi.org/10.1002/hbm.20538.
  25. Fink, A., Graif, B., & Neubauer, A. C. (2009b). Brain correlates underlying creative thinking: EEG alpha activity in professional vs. novice dancers. Neuroimage, 46(3), 854–862.  https://doi.org/10.1016/j.neuroimage.2009.02.036.CrossRefGoogle Scholar
  26. Fink, A., Grabner, R. H., Gebauer, D., Reishofer, G., Koschutnig, K., & Ebner, F. (2010). Enhancing creativity by means of cognitive stimulation: Evidence from an fMRI study. Neuroimage, 52(4), 1687–1695.  https://doi.org/10.1016/j.neuroimage.2010.05.072.CrossRefGoogle Scholar
  27. Fink, A., Benedek, M., Koschutnig, K., Pirker, E., Berger, E., Meister, S., et al. (2015). Training of verbal creativity modulates brain activity in regions associated with language-and memory-related demands. Human Brain Mapping, 36, 4104–4115.  https://doi.org/10.1002/hbm.22901.CrossRefGoogle Scholar
  28. Fink, A., Benedek, M., Koschutnig, K., Papousek, I., Weiss, E. M., Bagga, D., & Schopf, V. (2018). Modulation of resting-state network connectivity by verbal divergent thinking training. Brain and Cognition, 128, 1–6.CrossRefGoogle Scholar
  29. Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S., & Turner, R. (1996). Movement‐related effects in fMRI time-series. Magnetic resonance in medicine, 35(3), 346–355.Google Scholar
  30. Gibson, C., Folley, B. S., & Park, S. (2009). Enhanced divergent thinking and creativity in musicians: A behavioral and near-infrared spectroscopy study. Brain and Cognition, 69(1), 162–169.CrossRefGoogle Scholar
  31. Holroyd, C. B., Nieuwenhuis, S., Yeung, N., Nystrom, L., Mars, R. B., Coles, M. G., & Cohen, J. D. (2004). Dorsal anterior cingulate cortex shows fMRI response to internal and external error signals. Nature Neuroscience, 7(5), 497–498.  https://doi.org/10.1038/nn1238.CrossRefGoogle Scholar
  32. Honey, C. J., Thivierge, J.-P., & Sporns, O. (2010). Can structure predict function in the human brain? Neuroimage, 52(3), 766–776.CrossRefGoogle Scholar
  33. Japardi, K., Bookheimer, S., Knudsen, K., Ghahremani, D. G., & Bilder, R. M. (2018). Functional magnetic resonance imaging of divergent and convergent thinking in big-C creativity. Neuropsychologia., 118, 59–67.  https://doi.org/10.1016/j.neuropsychologia.2018.02.017.CrossRefGoogle Scholar
  34. Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience, 7.  https://doi.org/10.3389/fnhum.2013.00330.
  35. Kleibeuker, S. W., Stevenson, C. E., van der Aar, L., Overgaauw, S., van Duijvenvoorde, A. C., & Crone, E. A. (2017). Training in the adolescent brain: An fMRI training study on divergent thinking. Developmental Psychology, 53(2), 353–365.  https://doi.org/10.1037/dev0000239.CrossRefGoogle Scholar
  36. Kowatari, Y., Lee, S. H., Yamamura, H., Nagamori, Y., Levy, P., Yamane, S., & Yamamoto, M. (2009). Neural networks involved in artistic creativity. Human Brain Mapping, 30(5), 1678–1690.  https://doi.org/10.1002/hbm.20633.CrossRefGoogle Scholar
  37. Lee, H. L., Zahneisen, B., Hugger, T., Levan, P., & Hennig, J. (2013). Tracking dynamic resting-state networks at higher frequencies using MR-encephalography. Neuroimage, 65, 216–222.CrossRefGoogle Scholar
  38. Li, W., Yang, J., Zhang, Q., Li, G., & Qiu, J. (2016). The association between resting functional connectivity and visual creativity. Scientific Reports, 6.Google Scholar
  39. Liao, X. H., Xia, M. R., Xu, T., Dai, Z. J., Cao, X. Y., Niu, H. J., … He, Y. (2013). Functional brain hubs and their test-retest reliability: A multiband resting-state functional MRI study. Neuroimage, 83, 969–982.Google Scholar
  40. Limb, C. J., & Braun, A. R. (2008). Neural substrates of spontaneous musical performance: An fMRI study of jazz improvisation. PLoS One, 3(2), e1679.  https://doi.org/10.1371/journal.pone.0001679.CrossRefGoogle Scholar
  41. Ma, H.-H. (2006). A synthetic analysis of the effectiveness of single components and packages in creativity training programs. Creativity Research Journal, 18(4), 435–446.CrossRefGoogle Scholar
  42. Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage, 19(3), 1233–1239.  https://doi.org/10.1016/S1053-8119(03)00169-1.CrossRefGoogle Scholar
  43. Mansouri, F. A., Tanaka, K., & Buckley, M. J. (2009). Conflict-induced behavioural adjustment: A clue to the executive functions of the prefrontal cortex. Nature Reviews Neuroscience, 10(2), 141–152.  https://doi.org/10.1038/nrn2538.CrossRefGoogle Scholar
  44. Men, W., Falk, D., Sun, T., Chen, W., Li, J., Yin, D., … Fan, M. (2014). The corpus callosum of Albert Einstein's brain: Another clue to his high intelligence? Brain, 137(Pt 4), e268.  https://doi.org/10.1093/brain/awt252.
  45. Mokhtari, F., Akhlaghi, M. I., Simpson, S. L., Wu, G., & Laurienti, P. J. (2019). Sliding window correlation analysis: Modulating window shape for dynamic brain connectivity in resting state. Neuroimage, 189, 655–666.  https://doi.org/10.1016/j.neuroimage.2019.02.001.CrossRefGoogle Scholar
  46. Mumford, M. D. (2002). Social innovation: Ten cases from Benjamin Franklin. Creativity Research Journal, 14(2), 253–266.  https://doi.org/10.1207/S15326934CRJ1402_11.CrossRefGoogle Scholar
  47. Nachev, P., Kennard, C., & Husain, M. (2008). Functional role of the supplementary and pre-supplementary motor areas. Nature Reviews. Neuroscience, 9(11), 856–869.  https://doi.org/10.1038/nrn2478.CrossRefGoogle Scholar
  48. Plante, D. T., Birn, R. M., Walsh, E. C., Hoks, R. M., Cornejo, M. D., & Abercrombie, H. C. (2018). Reduced resting-state thalamostriatal functional connectivity is associated with excessive daytime sleepiness in persons with and without depressive disorders. Journal of Affective Disorders, 227, 517–520.CrossRefGoogle Scholar
  49. Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., … Petersen, S. E. (2011). Functional network organization of the human brain. Neuron, 72(4), 665–678.  https://doi.org/10.1016/j.neuron.2011.09.006.
  50. Saggar, M., Quintin, E. M., Bott, N. T., Kienitz, E., Chien, Y. H., Hong, D. W., … Reiss, A. L. (2017). Changes in brain activation associated with spontaneous improvization and figural creativity after design-thinking-based training: A longitudinal fMRI study. Cerebral Cortex, 27(7), 3542–3552.  https://doi.org/10.1093/cercor/bhw171.
  51. Schlegel, A., Alexander, P., Fogelson, S. V., Li, X., Lu, Z., Kohler, P. J., … Meng, M. (2015). The artist emerges: Visual art learning alters neural structure and function. Neuroimage, 105, 440–451.Google Scholar
  52. Scott, G., Leritz, L. E., & Mumford, M. D. (2004). The effectiveness of creativity training: A quantitative review. Creativity Research Journal, 16(4), 361–388.CrossRefGoogle Scholar
  53. Shi, L., Sun, J., Xia, Y., Ren, Z., Chen, Q., Wei, D., … Qiu, J. (2018). Large-scale brain network connectivity underlying creativity in resting-state and task fMRI: Cooperation between default network and frontal-parietal network. Biological Psychology, 135, 102–111.  https://doi.org/10.1016/j.biopsycho.2018.03.005.
  54. Smith, G. F. (1998). Idea-generation techniques: A formulary of active ingredients. The Journal of Creative Behavior, 32(2), 107–134.CrossRefGoogle Scholar
  55. Sun, J., Chen, Q., Zhang, Q., Li, Y., Li, H., Wei, D., … Qiu, J. (2016). Training your brain to be more creative: Brain functional and structural changes induced by divergent thinking training. Human Brain Mapping, 37, 3375, 3387.Google Scholar
  56. Sun, J., Liu, Z., Rolls, E. T., Chen, Q., Yao, Y., Yang, W., et al. (2019). Verbal creativity correlates with the temporal variability of brain networks during the resting state. Cerebral Cortex, 29(3), 1047–1058.  https://doi.org/10.1093/cercor/bhy010.
  57. Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., & Kawashima, R. (2011). Failing to deactivate: The association between brain activity during a working memory task and creativity. Neuroimage, 55(2), 681–687.  https://doi.org/10.1016/j.neuroimage.2010.11.052.CrossRefGoogle Scholar
  58. Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., & Kawashima, R. (2012). The association between resting functional connectivity and creativity. Cerebral Cortex, 22(12), 2921–2929.  https://doi.org/10.1093/cercor/bhr371.CrossRefGoogle Scholar
  59. Wang, J. H., Wang, L., Zang, Y. F., Yang, H., Tang, H. H., Gong, Q. Y., et al. (2009). Parcellation-dependent small-world brain functional networks: A resting-state fMRI study. Human Brain Mapping, 30(5), 1511–1523.CrossRefGoogle Scholar
  60. Whitney, C., Jefferies, E., & Kircher, T. (2011). Heterogeneity of the left temporal lobe in semantic representation and control: Priming multiple versus single meanings of ambiguous words. Cerebral Cortex, 21(4), 831–844.  https://doi.org/10.1093/cercor/bhq148.CrossRefGoogle Scholar
  61. Witelson, S. F., Kigar, D. L., & Harvey, T. (1999). The exceptional brain of Albert Einstein. Lancet, 353(9170), 2149–2153.  https://doi.org/10.1016/S0140-6736(98)10327-6.CrossRefGoogle Scholar
  62. Wu, X., Yang, W., Tong, D., Sun, J., Chen, Q., Wei, D., et al. (2015). A meta-analysis of neuroimaging studies on divergent thinking using activation likelihood estimation. Human Brain Mapping, 36, 2703–2718.CrossRefGoogle Scholar
  63. Zhang, J., Cheng, W., Liu, Z., Zhang, K., Lei, X., Yao, Y., et al. (2016). Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders. Brain, 139(Pt 8), 2307–2321.  https://doi.org/10.1093/brain/aww143.CrossRefGoogle Scholar
  64. Zhu, F., Zhang, Q., & Qiu, J. (2013). Relating inter-individual differences in verbal creative thinking to cerebral structures: An optimal voxel-based morphometry study. PLoS One, 8(11), e79272.  https://doi.org/10.1371/journal.pone.0079272.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jiangzhou Sun
    • 1
    • 2
  • Qinglin Zhang
    • 1
    • 2
  • Yu Li
    • 1
    • 2
  • Jie Meng
    • 1
    • 2
  • Qunlin Chen
    • 1
    • 2
  • Wenjing Yang
    • 1
    • 2
  • Dongtao Wei
    • 1
    • 2
  • Jiang Qiu
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Cognition and Personality (SWU)Ministry of EducationChongqingChina
  2. 2.Faculty of PsychologySouthwest UniversityChongqingChina

Personalised recommendations