Socioeconomic status in children is associated with spontaneous activity in right superior temporal gyrus

  • Claudinei Eduardo BiazoliJr
  • Giovanni Abrahão Salum
  • Ary Gadelha
  • Keila Rebello
  • Luciana Monteiro Moura
  • Pedro Mario Pan
  • Elisa Brietske
  • Euripedes Constantino Miguel
  • Luis Augusto Rohde
  • Rodrigo Affonseca Bressan
  • Andrea Parolin Jackowski
  • João Ricardo SatoEmail author


Socioeconomic status (SES) during childhood is a well-documented life-course health determinant. Despite recent advances on characterizing brain structural variance associated with SES during development, how it influences brain’s functional organization remains elusive. Associations between SES, an fMRI feature of regional spontaneous activity (fractional amplitude of low frequencies fluctuation, fALFF), and behavioral/emotional problems were investigated in a school-based sample of 655 Brazilian children. A voxel-by-voxel approach was applied in order to map brain regions where fALFF was correlated with SES. Based on compelling previous evidence, we hypothesized that fALFF should be associated with SES in areas involved in language processing or cognitive control. Further, we tested if the spontaneous activity in these mapped areas would also correlated with general, internalizing and externalizing problems. SES of children was found to be positively correlated with spontaneous activity in right superior temporal gyrus. In the exploratory analysis, the fALFF of this area was negatively correlated with the expression of internalizing problems. Extending previous behavioral and structural neuroimaging findings, we report an association between SES and the spontaneous activity of a brain area enrolled in the extended language network. This finding is consistent with the hypothesis that the variability on linguistic environment according to SES lead to different developmental trajectories of functional networks instantiating language.


Socioeconomic status fMRI Neuroimaging Children Neurodevelopment 



The opinions, hypotheses, conclusions and recommendations of this study are those of the authors and do not necessary represent the opinions of the funding agencies. The authors are grateful to Sao Paulo Research Foundation - FAPESP (J.R.S. grants 2013/10498-6 and 2013/00506-1; A.P.J. grant 2013/08531-5) for funding this research. This is a study from the National Institutes of Science and Technology for Developmental Psychiatry of Children and Adolescents (INPD) supported by CNPq (573974/2008-0 and 442026/2014-5) and FAPESP (2008/57896-8). P.M.P. receives a fellowship from CNPq-Brazil.


FAPESP (Brazil) grants 2008/57896–8, 2013/10498–6, 2013/00506–1, 2013/08531–5.

CNPq (Brazil) grants 573974/2008–0 and 442026/2014–5.

Compliance with ethical standards

Conflict of interest

Dr. Luis Augusto Rohde is supported by grants from CNPq and has been on the speakers’ bureau/advisory board and/or acted as a consultant for Eli-Lilly, Janssen-Cilag, Novartis and Shire in the last three years. The ADHD and Juvenile Bipolar Disorder Outpatient Programs he chaired received unrestricted educational and research support from the following pharmaceutical companies in the last three years: Eli-Lilly, Janssen-Cilag, Novartis, and Shire. He receives authorship royalties from Oxford Press and ArtMed. He has also received travel awards from Shire for his participation in the 2014 APA and 2015 WFADHD meetings. Dr. Rodrigo A. Bressan has been on the speakers’ bureau/advisory board of AstraZeneca, Bristol, Janssen and Lundbeck and has received research grants from Janssen, Eli Lilly, Lundbeck, Novartis, Roche, FAPESP, CNPq, CAPES, Fundação E.J. Safra and Fundação ABAHDS. He is a shareholder of Biomolecular Technology Ltd.

Ethical approval


Informed consent



  1. Achenbach, T., & Rescorla, L. (2001). Manual for the ASEBA school-age forms & profiles: An integrated system of multi-informant assessment. Youth & Families, Burlington, VT: University of Vermont. Research Center for Children.Google Scholar
  2. Almeida, P.d., Wickerhauser, H., 1991. O critério ABA/ABIPEME: em busca de uma atualização. São Paulo.Google Scholar
  3. Biswal, B. B., Mennes, M., Zuo, X. N., Gohel, S., Kelly, C., Smith, S. M., et al. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences, 107(10), 4734–4739.CrossRefGoogle Scholar
  4. Bordin, I. A., Rocha, M. M., Paula, C. S., Teixeira, M. C. T., Achenbach, T. M., Rescorla, L. A., & Silvares, E. F. (2013). Child behavior checklist (CBCL), youth self-report (YSR) and Teacher's report form (TRF): An overview of the development of the original and Brazilian versions. Cadernos de Saúde Pública, 29, 13–28.CrossRefGoogle Scholar
  5. Bradley, R. H., Corwyn, R. F. (2002). Socioeconomic status and child development. Annual Review of Psycholgy, 53, 371–99.Google Scholar
  6. Braveman, P. A., Cubbin, C., Egerter, S., Chideya, S., Marchi, K. S., Metzler, M., & Posner, S. (2005). Socioeconomic status in health research: One size does not fit all. Jama, 294(22), 2879–2888. Scholar
  7. Brunner, M., Nagy, G., & Wilhelm, O. (2012). A tutorial on hierarchically structured constructs. Journal of Personality, 80, 796–846.CrossRefGoogle Scholar
  8. Cordes, D., Haughton, V. M., Arfanakis, K., Carew, J. D., Turski, P. A., Moritz, C. H., Quigley, M. A., & Meyerand, M. E. (2001). Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. American Journal of Neuroradiology, 22(7), 1326–1333.Google Scholar
  9. Davidson, R. J., & McEwen, B. S. (2012). Social influences on neuroplasticity: Stress and interventions to promote well-being. Nature Neuroscience, 15, 689–695.CrossRefGoogle Scholar
  10. De Bellis, M. D., Broussard, E. R., Herring, D. J., Wexler, S., Moritz, G., & Benitez, J. G. (2001). Psychiatric co-morbidity in caregivers and children involved in maltreatment: A pilot research study with policy implications. Child Abuse & Neglect, 25, 923–944.CrossRefGoogle Scholar
  11. Di, X., Kim, E. H., Huang, C. C., Tsai, S. J., Lin, C. P., & Biswal, B. B. (2013). The influence of the amplitude of low-frequency fluctuations on resting-state functional connectivity. Frontiers in Human Neuroscience, 7, 118.Google Scholar
  12. Dohrenwend, B. P., Levav, I., Shrout, P. E., Schwartz, S., Naveh, G., Link, B. G., Skodol, A. E., & Stueve, A. (1992). Socioeconomic status and psychiatric disorders: The causation-selection issue. Science, 255, 946–952.CrossRefGoogle Scholar
  13. Duncan, G. J., & Magnuson, K. A. (2003). Off with Hollingshead: Socioeconomic resources, parenting, and child development. Socioeconomic status, parenting, and child development, 83–106.Google Scholar
  14. Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences of the United States of America, 113(28), 7900–7905.CrossRefGoogle Scholar
  15. Farah, M. J., Shera, D. M., Savage, J. H., Betancourt, L., Giannetta, J. M., Brodsky, N. L., Malmud, E. K., & Hurt, H. (2006). Childhood poverty: Specific associations with neurocognitive development. Brain Research, 1110, 166–174.CrossRefGoogle Scholar
  16. Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., et al. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neuroscience, 2(10), 861–863.CrossRefGoogle Scholar
  17. Hackman, D. A., Farah, M. J., & Meaney, M. J. (2010). Socioeconomic status and the brain: Mechanistic insights from human and animal research. Nature Reviews Neuroscience, 11, 651–659.CrossRefGoogle Scholar
  18. Hair, N. L., Hanson, J. L., Wolfe, B. L., & Pollak, S. D. (2015). Association of child poverty, brain development, and academic achievement. JAMA Pediatrics, 169, 822–829.CrossRefGoogle Scholar
  19. Han, Y., Wang, J., Zhao, Z., Min, B., Lu, J., Li, K., He, Y., & Jia, J. (2011). Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: A resting-state fMRI study. Neuroimage, 55(1), 287–295.CrossRefGoogle Scholar
  20. Health, N.I.o.C., Network, H.D.E.C.C.R. (2005). Duration and developmental timing of poverty and children's cognitive and social development from birth through third grade. Child Development, 795–810.Google Scholar
  21. Hein, G., & Knight, R. T. (2008). Superior temporal sulcus—it's my area: Or is it? Cognitive Neuroscience, Journal of, 20, 2125–2136.CrossRefGoogle Scholar
  22. Holz, N. E., Boecker, R., Hohm, E., Zohsel, K., Buchmann, A. F., Blomeyer, D., Jennen-Steinmetz, C., Baumeister, S., Hohmann, S., & Wolf, I. (2015). The long-term impact of early life poverty on orbitofrontal cortex volume in adulthood: Results from a prospective study over 25 years. Neuropsychopharmacology, 40, 996–1004.CrossRefGoogle Scholar
  23. Johnson, J. G., Cohen, P., Dohrenwend, B. P., Link, B. G., & Brook, J. S. (1999). A longitudinal investigation of social causation and social selection processes involved in the association between socioeconomic status and psychiatric disorders. Journal of Abnormal Psychology, 108, 490–499.CrossRefGoogle Scholar
  24. Kaiser, A. P., Hancock, T. B., Cai, X., Foster, E. M., & Hester, P. P. (2000). Parent-reported behavioral problems and language delays in boys and girls enrolled in head start classrooms. Behavioral Disorders, 26–41.Google Scholar
  25. Kieling, C., Herrman, H., Patel, V., Tyrer, P., & Mari, J. J. (2009). A global perspective on the dissemination of mental health research. Lancet (London, England), 374, 1500–1500.CrossRefGoogle Scholar
  26. Kim, P., Evans, G. W., Angstadt, M., Ho, S. S., Sripada, C. S., Swain, J. E., Liberzon, I., & Phan, K. L. (2013). Effects of childhood poverty and chronic stress on emotion regulatory brain function in adulthood. Proceedings of the National Academy of Sciences, 110, 18442–18447.CrossRefGoogle Scholar
  27. Korenman, S., Miller, J. E., & Sjaastad, J. E. (1995). Long-term poverty and child development in the United States: Results from the NLSY. Children and Youth Services Review, 17, 127–155.CrossRefGoogle Scholar
  28. Krishnadas, R., McLean, J., Batty, G. D., Burns, H., Deans, K. A., Ford, I., McConnachie, A., McLean, J. S., Millar, K., & Sattar, N. (2013). Socioeconomic deprivation and cortical morphology: Psychological, social, and biological determinants of ill health study. Psychosomatic Medicine, 75, 616–623.CrossRefGoogle Scholar
  29. Lemstra, M., Neudorf, C., D'arcy, C., Kunst, A., Warren, L. M., & Bennett, N. R. (2008). A systematic review of depressed mood and anxiety by SES in youth aged 10-15 years. Canadian Journal of Public Health/Revue Canadienne de Sante'e Publique, 125–129.Google Scholar
  30. Lendvai, B., Stern, E. A., Chen, B., & Svoboda, K. (2000). Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature, 404(6780), 876–881.CrossRefGoogle Scholar
  31. Liu, D., Diorio, J., Day, J. C., Francis, D. D., & Meaney, M. J. (2000). Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nature Neuroscience, 3(8), 799–806.CrossRefGoogle Scholar
  32. Lucariello, J. M., Durand, T. M., & Yarnell, L. (2007). Social versus intrapersonal ToM: Social ToM is a cognitive strength for low-and middle-SES children. Journal of Applied Developmental Psychology, 28, 285–297.CrossRefGoogle Scholar
  33. Marmot, M., & Wilkinson, R. (2005). Social determinants of health. Oxford University Press.Google Scholar
  34. Marmot, M., Friel, S., Bell, R., Houweling, T. A., Taylor, S., & Health, C.o.S.D.o. (2008). Closing the gap in a generation: Health equity through action on the social determinants of health. The Lancet, 372, 1661–1669.CrossRefGoogle Scholar
  35. Maughan, A., & Cicchetti, D. (2002). Impact of child maltreatment and interadult violence on children’s emotion regulation abilities and socioemotional adjustment. Child Development, 73, 1525–1542.CrossRefGoogle Scholar
  36. McCabe, P. C., & Meller, P. J. (2004). The relationship between language and social competence: How language impairment affects social growth. Psychology in the Schools, 41(3), 313–321.Google Scholar
  37. Meda, S. A., Wang, Z., Ivleva, E. I., Poudyal, G., Keshavan, M. S., Tamminga, C. A., ... & Lui, S. (2015). Frequency-specific neural signatures of spontaneous low-frequency resting state fluctuations in psychosis: evidence from bipolar-schizophrenia network on intermediate phenotypes (B-SNIP) consortium. Schizophrenia bulletin, sbv064.Google Scholar
  38. Noble, K. G., Norman, M. F., & Farah, M. J. (2005). Neurocognitive correlates of socioeconomic status in kindergarten children. Developmental Science, 8, 74–87.CrossRefGoogle Scholar
  39. Noble, K. G., Wolmetz, M. E., Ochs, L. G., Farah, M. J., & McCandliss, B. D. (2006). Brain–behavior relationships in reading acquisition are modulated by socioeconomic factors. Developmental Science, 9, 642–654.CrossRefGoogle Scholar
  40. Noble, K. G., McCandliss, B. D., & Farah, M. J. (2007). Socioeconomic gradients predict individual differences in neurocognitive abilities. Developmental Science, 10, 464–480.CrossRefGoogle Scholar
  41. Noble, K. G., Houston, S. M., Kan, E., & Sowell, E. R. (2012). Neural correlates of socioeconomic status in the developing human brain. Developmental Science, 15(4), 516–527.CrossRefGoogle Scholar
  42. Noble, K. G., Houston, S. M., Brito, N. H., Bartsch, H., Kan, E., Kuperman, J. M., Akshoomoff, N., Amaral, D. G., Bloss, C. S., & Libiger, O. (2015). Family income, parental education and brain structure in children and adolescents. Nature Neuroscience, 18, 773–778.CrossRefGoogle Scholar
  43. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154.CrossRefGoogle Scholar
  44. Raizada, R. D., Richards, T. L., Meltzoff, A., & Kuhl, P. K. (2008). Socioeconomic status predicts hemispheric specialisation of the left inferior frontal gyrus in young children. Neuroimage, 40, 1392–1401.CrossRefGoogle Scholar
  45. Raver, C. C., Roy, A. L., & Pressler, E. (2015). Struggling to stay afloat: Dynamic models of poverty-related adversity and child outcomes (In Families in an era of increasing inequality (pp. 201–212)). Cham: Springer.Google Scholar
  46. Roza, S. J., Hofstra, M. B., van der Ende, J., & Verhulst, F. C. (2003). Stable prediction of mood and anxiety disorders based on behavioral and emotional problems in childhood: A 14-year follow-up during childhood, adolescence, and young adulthood. American Journal of Psychiatry, 160(12), 2116–2121.CrossRefGoogle Scholar
  47. Salum, G. A., Gadelha, A., Pan, P. M., Moriyama, T. S., Graeff-Martins, A. S., Tamanaha, A. C., Alvarenga, P., Krieger, F. V., Fleitlich-Bilyk, B., & Jackowski, A. (2014). High risk cohort study for psychiatric disorders in childhood: Rationale, design, methods and preliminary results. International Journal of Method Psychiatric Research, 24, 58–73.CrossRefGoogle Scholar
  48. Sato, J.R., Salum, G.A., Gadelha, A., Crossley, N., Vieira, G., Manfro, G.G., Zugman, A., Picon, F.A., Pan, P.M., Hoexter, M.Q., 2015. Default mode network maturation and psychopathology in children and adolescents. Journal of Child Psychology and Psychiatry.Google Scholar
  49. Satterthwaite, T. D., Wolf, D. H., Loughead, J., Ruparel, K., Elliott, M. A., Hakonarson, H., Gur, R. C., & Gur, R. E. (2012). Impact of in-scanner head motion on multiple measures of functional connectivity: Relevance for studies of neurodevelopment in youth. Neuroimage, 60(1), 623–632.CrossRefGoogle Scholar
  50. Shaywitz, S. E., Shaywitz, B. A., Fulbright, R. K., Skudlarski, P., Mencl, W. E., Constable, R. T., Pugh, K. R., Holahan, J. M., Marchione, K. E., & Fletcher, J. M. (2003). Neural systems for compensation and persistence: Young adult outcome of childhood reading disability. Biological Psychiatry, 54, 25–33.CrossRefGoogle Scholar
  51. Shonkoff, J. P. (2012). Leveraging the biology of adversity to address the roots of disparities in health and development. Proceedings of the National Academy of Sciences, 109, 17302–17307.CrossRefGoogle Scholar
  52. Sirin, S. R. (2005). Socioeconomic status and academic achievement: A meta-analytic review of research. Review of Educational Research, 75, 417–453.CrossRefGoogle Scholar
  53. South, S., & Krueger, R. (2011). Genetic and environmental influences on internalizing psychopathology vary as a function of economic status. Psychological Medicine, 41, 107–117.CrossRefGoogle Scholar
  54. Sowell, E. R., Thompson, P. M., Leonard, C. M., Welcome, S. E., Kan, E., & Toga, A. W. (2004). Longitudinal mapping of cortical thickness and brain growth in normal children. Journal of Neuroscience, 24(38), 8223–8231.CrossRefGoogle Scholar
  55. Tellegen, A., & Briggs, P. F. (1967). Old wine in new skins: Grouping Wechsler subtests into new scales. Journal of Consulting Psychology, 31, 499–506.CrossRefGoogle Scholar
  56. Toga, A. W., Thompson, P. M., & Sowell, E. R. (2006). Mapping brain maturation. Trends in Neurosciences, 29(3), 148–159.CrossRefGoogle Scholar
  57. Ursache, A., & Noble, K. G. (2016). Neurocognitive development in socioeconomic context: Multiple mechanisms and implications for measuring socioeconomic status. Psychophysiology, 53(1), 71–82.CrossRefGoogle Scholar
  58. Van Daal, J., Verhoeven, L., & Van Balkom, H. (2007). Behaviour problems in children with language impairment. Journal of Child Psychology and Psychiatry, 48(11), 1139–1147.CrossRefGoogle Scholar
  59. Wade, M., Moore, C., Astington, J. W., Frampton, K., & Jenkins, J. M. (2015). Cumulative contextual risk, maternal responsivity, and social cognition at 18 months. Development and Psychopathology, 27, 189–203.CrossRefGoogle Scholar
  60. Wadsworth, M. E., & Achenbach, T. M. (2005). Explaining the link between low socioeconomic status and psychopathology: Testing two mechanisms of the social causation hypothesis. Journal of Consulting and Clinical Psychology, 73, 1146–1153.CrossRefGoogle Scholar
  61. Wagner, F., Martel, M. M., Cogo-Moreira, H., Maia, C. R., Pan, P. M., Rohde, L. A., & Salum, G. A. (2016). Attention-deficit/hyperactivity disorder dimensionality: The reliable 'g' and the elusive 's' dimensions. European Child & Adolescent Psychiatry, 25(1), 83–90.CrossRefGoogle Scholar
  62. Wang, G. Z., Belgard, T. G., Mao, D., Chen, L., Berto, S., Preuss, T. M., Lu, H., Geschwind, D. H., & Konopka, G. (2015). Correspondence between resting-state activity and brain gene expression. Neuron, 88(4), 659–666.CrossRefGoogle Scholar
  63. Wang, L., Kong, Q., Li, K., Su, Y., Zeng, Y., Zhang, Q., et al. (2016). Frequency-dependent changes in amplitude of low-frequency oscillations in depression: A resting-state fMRI study. Neuroscience Letters, 614, 105–111.CrossRefGoogle Scholar
  64. Wechsler, D. (2002). WISC-III: escala de inteligência Wechsler para crianças: manual. São Paulo: Casa do Psicólogo.Google Scholar
  65. Woo, C.-W., Krishnan, A., & Wager, T. D. (2014). Cluster-extent based thresholding in fMRI analyses: Pitfalls and recommendations. Neuroimage, 91, 412–419.CrossRefGoogle Scholar
  66. Xu, K., Liu, H., Li, H., Tang, Y., Womer, F., Jiang, X., et al. (2014). Amplitude of low-frequency fluctuations in bipolar disorder: A resting state fMRI study. Journal of Affective Disorders, 152, 237–242.CrossRefGoogle Scholar
  67. Xu, M., De Beuckelaer, A., Wang, X., Liu, L., Song, Y., & Liu, J. (2015a). Regional amplitude of the low-frequency fluctuations at rest predicts word-reading skill. Neuroscience, 298, 318–328.CrossRefGoogle Scholar
  68. Xu, Y., Zhuo, C., Qin, W., Zhu, J., & Yu, C. (2015b). Altered spontaneous brain activity in schizophrenia: A meta-analysis and a large-sample study. BioMed Research International, 2015, 204628 Review.Google Scholar
  69. Yan, C.-G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R. C., Di Martino, A., Li, Q., Zuo, X.-N., Castellanos, F. X., & Milham, M. P. (2013a). A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage, 76, 183–201.CrossRefGoogle Scholar
  70. Yan, C.-G., Craddock, R. C., Zuo, X.-N., Zang, Y.-F., & Milham, M. P. (2013b). Standardizing the intrinsic brain: Towards robust measurement of inter-individual variation in 1000 functional connectomes. Neuroimage, 80, 246–262.CrossRefGoogle Scholar
  71. Yovel, G., & Belin, P. (2013). A unified coding strategy for processing faces and voices. Trends in Cognitive Sciences, 17, 263–271.CrossRefGoogle Scholar
  72. Yu, R., Chien, Y. L., Wang, H. L. S., Liu, C. M., Liu, C. C., Hwang, T. J., Hsieh, M. H., Hwu, H. G., & Tseng, W. Y. I. (2014). Frequency-specific alternations in the amplitude of low-frequency fluctuations in schizophrenia. Human Brain Mapping, 35(2), 627–637.CrossRefGoogle Scholar
  73. Zhong, W. J., Zhou, Z. M., Zhao, J. N., Wu, W., & Guo, D. J. (2016). Abnormal spontaneous brain activity in minimal hepatic encephalopathy: Resting-state fMRI study. Diagnostic and Interventional Radiology, 22(2), 196–200.CrossRefGoogle Scholar
  74. Zou, Q.-H., Zhu, C.-Z., Yang, Y., Zuo, X.-N., Long, X.-Y., Cao, Q.-J., Wang, Y.-F., & Zang, Y.-F. (2008). An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. Journal of Neuroscience Methods, 172, 137–141.CrossRefGoogle Scholar
  75. Zuo, X.-N., Di Martino, A., Kelly, C., Shehzad, Z. E., Gee, D. G., Klein, D. F., Castellanos, F. X., Biswal, B. B., & Milham, M. P. (2010). The oscillating brain: Complex and reliable. Neuroimage, 49, 1432–1445.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Claudinei Eduardo BiazoliJr
    • 1
  • Giovanni Abrahão Salum
    • 2
    • 3
  • Ary Gadelha
    • 3
    • 4
  • Keila Rebello
    • 1
  • Luciana Monteiro Moura
    • 3
    • 4
  • Pedro Mario Pan
    • 3
    • 4
  • Elisa Brietske
    • 3
    • 4
  • Euripedes Constantino Miguel
    • 3
    • 5
  • Luis Augusto Rohde
    • 2
    • 3
  • Rodrigo Affonseca Bressan
    • 3
    • 4
  • Andrea Parolin Jackowski
    • 3
    • 4
  • João Ricardo Sato
    • 1
    • 3
    Email author
  1. 1.Center of Mathematics, Computing and CognitionUniversidade Federal do ABCSanto AndréBrazil
  2. 2.Hospital de Clinicas de Porto Alegre and Department of PsychiatryFederal University of Rio Grande do SulPorto AlegreBrazil
  3. 3.National Institute of Developmental Psychiatry for Children and AdolescentsCNPqSao PauloBrazil
  4. 4.Interdisciplinary Lab for Clinical Neurosciences (LiNC)Universidade Federal de Sao Paulo (UNIFESP)Sao PauloBrazil
  5. 5.Department of Psychiatry, School of MedicineUniversity of Sao PauloSao PauloBrazil

Personalised recommendations