Schizophrenia-related abnormalities in the triple network: a meta-analysis of working memory studies

  • Dongya Wu
  • Tianzi JiangEmail author


Previous meta-analyses found abnormal brain activations in schizophrenia patients compared with normal controls when performing working memory tasks. Although most studies focused on dysfunction of the working memory activation network in schizophrenia patients, deactivation abnormalities of the working memory in the default mode network have also been reported in schizophrenia but have received less attention. Our goal was to discover whether deactivation abnormalities can also be consistently found in schizophrenia during working memory tasks and, further, to consider both activation and deactivation abnormalities. Fifty-two English language peer-reviewed studies were included in this meta-analysis. Compared with normal controls, the schizophrenia patients showed activation dysfunction of the bilateral dorsolateral prefrontal cortex and posterior parietal cortex as well as the anterior insula, anterior cingulate cortex, and supplementary motor area, which are core nodes of the central executive and salience network. In addition to dysfunction of the activation networks, the patients showed deactivation abnormalities in the ventral medial prefrontal cortex and posterior cingulate cortex, which are core nodes of the default mode network. These results suggest that both activation and deactivation abnormalities exist in schizophrenia patients and that these abnormalities should both be considered when investigating the pathophysiological mechanism of schizophrenia.


Schizophrenia Meta-analysis Neuroimaging Working memory 



This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDB02030300) and the Natural Science Foundation of China (Grant Nos. 91432302, 31620103905, and 81501179). We appreciate the editing assistance of Rhoda E. and Edmund F. Perozzi, PhDs.

Compliance with ethical standards

Conflict of interest disclosures

All authors declare that they have no conflict of interest.

Animal studies and human participants

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Ethical approval

This article does not contain any studies with animals and humans performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. Acar, F., Seurinck, R., Eickhoff, S. B., & Moerkerke, B. (2018). Assessing robustness against potential publication bias in activation likelihood estimation (ALE) meta-analyses for fMRI. PLoS One, 13(11), e0208177.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Anticevic, A., Repovs, G., Shulman, G. L., & Barch, D. M. (2010). When less is more: TPJ and default network deactivation during encoding predicts working memory performance. Neuroimage, 49(3), 2638–2648.PubMedCrossRefGoogle Scholar
  3. Anticevic, A., Repovs, G., & Barch, D. M. (2013). Working memory encoding and maintenance deficits in schizophrenia: Neural evidence for activation and deactivation abnormalities. Schizophrenia Bulletin, 39(1), 168–178.PubMedCrossRefGoogle Scholar
  4. Avsar, K. B., Stoeckel, L. E., Bolding, M. S., White, D. M., Tagamets, M. A., Holcomb, H. H., & Lahti, A. C. (2011). Aberrant visual circuitry associated with normal spatial match-to-sample accuracy in schizophrenia. Psychiatry Research, 193(3), 138–143.PubMedCrossRefGoogle Scholar
  5. Barch, D. M., Carter, C. S., Braver, T. S., Sabb, F. W., MacDonald, A., 3rd, Noll, D. C., et al. (2001). Selective deficits in prefrontal cortex function in medication-naive patients with schizophrenia. Archives of General Psychiatry, 58(3), 280–288.PubMedCrossRefGoogle Scholar
  6. Barch, D. M., Csernansky, J. G., Conturo, T., & Snyder, A. Z. (2002). Working and long-term memory deficits in schizophrenia: Is there a common prefrontal mechanism? Journal of Abnormal Psychology, 111(3), 478–494.PubMedCrossRefGoogle Scholar
  7. Bittner, R. A., Linden, D. E. J., Roebroeck, A., Hartling, F., Rotarska-Jagiela, A., Maurer, K., et al. (2015). The when and where of working memory dysfunction in early-onset schizophrenia-a functional magnetic resonance imaging study. Cerebral Cortex, 25(9), 2494–2506.PubMedCrossRefGoogle Scholar
  8. Bor, J., Brunelin, J., Sappey-Marinier, D., Ibarrola, D., d'Amato, T., Suaud-Chagny, M. F., & Saoud, M. (2011). Thalamus abnormalities during working memory in schizophrenia. An fMRI study. Schizophrenia Research, 125(1), 49–53.PubMedCrossRefGoogle Scholar
  9. Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: Emerging methods and principles. Trends in Cognitive Sciences, 14(6), 277–290.PubMedCrossRefGoogle Scholar
  10. Callicott, J. H., Bertolino, A., Mattay, V. S., Langheim, F. J., Duyn, J., Coppola, R., Goldberg, T. E., & Weinberger, D. R. (2000). Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cerebral Cortex, 10(11), 1078–1092.PubMedCrossRefGoogle Scholar
  11. Callicott, J. H., Mattay, V. S., Verchinski, B. A., Marenco, S., Egan, M. F., & Weinberger, D. R. (2003). Complexity of prefrontal cortical dysfunction in schizophrenia: More than up or down. American Journal of Psychiatry, 160(12), 2209–2215.PubMedCrossRefGoogle Scholar
  12. Carter, C. S., MacDonald, A. W., 3rd, Ross, L. L., & Stenger, V. A. (2001). Anterior cingulate cortex activity and impaired self-monitoring of performance in patients with schizophrenia: An event-related fMRI study. American Journal of Psychiatry, 158(9), 1423–1428.PubMedCrossRefGoogle Scholar
  13. Dreher, J. C., Koch, P., Kohn, P., Apud, J., Weinberger, D. R., & Berman, K. F. (2012). Common and differential pathophysiological features accompany comparable cognitive impairments in medication-free patients with schizophrenia and in healthy aging subjects. Biological Psychiatry, 71(10), 890–897.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30(9), 2907–2926.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Garrity, A. G., Pearlson, G. D., McKiernan, K., Lloyd, D., Kiehl, K. A., & Calhoun, V. D. (2007). Aberrant "default mode" functional connectivity in schizophrenia. American Journal of Psychiatry, 164(3), 450–457.PubMedCrossRefGoogle Scholar
  16. Gehring, W. J., Goss, B., Coles, M. G., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4(6), 385–390.CrossRefGoogle Scholar
  17. Glahn, D. C., Ragland, J. D., Abramoff, A., Barrett, J., Laird, A. R., Bearden, C. E., & Velligan, D. I. (2005). Beyond hypofrontality: A quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Human Brain Mapping, 25(1), 60–69.PubMedCrossRefGoogle Scholar
  18. Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253–258.PubMedCrossRefGoogle Scholar
  19. Guerrero-Pedraza, A., McKenna, P., Gomar, J., Sarro, S., Salvador, R., Amann, B., et al. (2012). First-episode psychosis is characterized by failure of deactivation but not by hypo-or hyperfrontality. Psychological Medicine, 42(01), 73–84.PubMedCrossRefGoogle Scholar
  20. Guo, S., Kendrick, K. M., Yu, R., Wang, H. L., & Feng, J. (2014). Key functional circuitry altered in schizophrenia involves parietal regions associated with sense of self. Human Brain Mapping, 35(1), 123–139.PubMedCrossRefGoogle Scholar
  21. Hamilton, L. S., Altshuler, L. L., Townsend, J., Bookheimer, S. Y., Phillips, O. R., Fischer, J., Woods, R. P., Mazziotta, J. C., Toga, A. W., Nuechterlein, K. H., & Narr, K. L. (2009). Alterations in functional activation in euthymic bipolar disorder and schizophrenia during a working memory task. Human Brain Mapping, 30(12), 3958–3969.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Honey, G. D., Bullmore, E. T., Soni, W., Varatheesan, M., Williams, S. C., & Sharma, T. (1999). Differences in frontal cortical activation by a working memory task after substitution of risperidone for typical antipsychotic drugs in patients with schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 96(23), 13432–13437.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Honey, G. D., Bullmore, E. T., & Sharma, T. (2002). De-coupling of cognitive performance and cerebral functional response during working memory in schizophrenia. Schizophrenia Research, 53(1–2), 45–56.PubMedCrossRefGoogle Scholar
  24. Honey, G. D., Sharma, T., Suckling, J., Giampietro, V., Soni, W., Williams, S. C., et al. (2003). The functional neuroanatomy of schizophrenic subsyndromes. Psychological Medicine, 33(6), 1007–1018.PubMedCrossRefGoogle Scholar
  25. Hugdahl, K., Rund, B. R., Lund, A., Asbjornsen, A., Egeland, J., Ersland, L., et al. (2004). Brain activation measured with fMRI during a mental arithmetic task in schizophrenia and major depression. American Journal of Psychiatry, 161(2), 286–293.PubMedCrossRefGoogle Scholar
  26. Iwabuchi, S. J., Liddle, P. F., & Palaniyappan, L. (2015). Structural connectivity of the salience-executive loop in schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 265(2), 163–166.PubMedCrossRefGoogle Scholar
  27. Jansma, J. M., Ramsey, N. F., van der Wee, N. J. A., & Kahn, R. S. (2004). Working memory capacity in schizophrenia: A parametric fMRI study. Schizophrenia Research, 68(2–3), 159–171.PubMedCrossRefGoogle Scholar
  28. Jiang, S., Yan, H., Chen, Q., Tian, L., Lu, T., Tan, H. Y., Yan, J., & Zhang, D. (2015). Cerebral inefficient activation in schizophrenia patients and their unaffected parents during the N-Back working memory task: A family fMRI study. PLoS One, 10(8), e0135468.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Johnson, M. R., Morris, N. A., Astur, R. S., Calhoun, V. D., Mathalon, D. H., Kiehl, K. A., & Pearlson, G. D. (2006). A functional magnetic resonance imaging study of working memory abnormalities in schizophrenia. Biological Psychiatry, 60(1), 11–21.PubMedCrossRefGoogle Scholar
  30. Kapur, S. (2003). Psychosis as a state of aberrant salience: A framework linking biology, phenomenology, and pharmacology in schizophrenia. American Journal of Psychiatry, 160(1), 13–23.PubMedCrossRefGoogle Scholar
  31. Kelly, A. M. C., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2008). Competition between functional brain networks mediates behavioral variability. Neuroimage, 39(1), 527–537.PubMedCrossRefGoogle Scholar
  32. Kerns, J. G., Cohen, J. D., MacDonald, A. W., 3rd, Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303(5660), 1023–1026.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Kim, J. H., Glahn, D. C., Nuechterlein, K. H., & Cannon, T. D. (2004). Maintenance and manipulation of information in schizophrenia: Further evidence for impairment in the central executive component of working memory. Schizophrenia Research, 68(2–3), 173–187.PubMedCrossRefGoogle Scholar
  34. Kim, J., Matthews, N. L., & Park, S. (2010). An event-related FMRI study of phonological verbal working memory in schizophrenia. PLoS One, 5(8), e12068.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Kindermann, S. S., Brown, G. G., Zorrilla, L. E., Olsen, R. K., & Jeste, D. V. (2004). Spatial working memory among middle-aged and older patients with schizophrenia and volunteers using fMRI. Schizophrenia Research, 68(2–3), 203–216.PubMedCrossRefGoogle Scholar
  36. Koch, K., Wagner, G., Nenadic, I., Schachtzabel, C., Roebel, M., Schultz, C., Axer, M., Reichenbach, J. R., Sauer, H., & Schlösser, R. G. M. (2007). Temporal modeling demonstrates preserved overlearning processes in schizophrenia: An fMRI study. Neuroscience, 146(4), 1474–1483.PubMedCrossRefGoogle Scholar
  37. Kyriakopoulos, M., Dima, D., Roiser, J. P., Corrigall, R., Barker, G. J., & Frangou, S. (2012). Abnormal functional activation and connectivity in the working memory network in early-onset schizophrenia. Journal of the American Academy of Child and Adolescent Psychiatry, 51(9), 911–920 e912.PubMedCrossRefGoogle Scholar
  38. Lancaster, J. L., Tordesillas-Gutierrez, D., Martinez, M., Salinas, F., Evans, A., Zilles, K., et al. (2007). Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Human Brain Mapping, 28(11), 1194–1205.PubMedCrossRefGoogle Scholar
  39. Landin-Romero, R., McKenna, P. J., Salgado-Pineda, P., Sarro, S., Aguirre, C., Sarri, C., et al. (2015). Failure of deactivation in the default mode network: A trait marker for schizophrenia? Psychological Medicine, 45(6), 1315–1325.PubMedCrossRefGoogle Scholar
  40. Lee, J., Folley, B. S., Gore, J., & Park, S. (2008). Origins of spatial working memory deficits in schizophrenia: An event-related FMRI and near-infrared spectroscopy study. PLoS One, 3(3), e1760.PubMedPubMedCentralCrossRefGoogle Scholar
  41. MacDonald, A. W., III, Carter, C. S., Kerns, J. G., Ursu, S., Barch, D. M., Holmes, A. J., Stenger, V. A., & Cohen, J. D. (2005). Specificity of prefrontal dysfunction and context processing deficits to schizophrenia in never-medicated patients with first-episode psychosis. American Journal of Psychiatry, 162(3), 475–484.PubMedCrossRefGoogle Scholar
  42. Manoach, D. S. (2003). Prefrontal cortex dysfunction during working memory performance in schizophrenia: Reconciling discrepant findings. Schizophrenia Research, 60(2–3), 285–298.PubMedCrossRefGoogle Scholar
  43. Manoach, D. S., Gollub, R. L., Benson, E. S., Searl, M. M., Goff, D. C., Halpern, E., Saper, C. B., & Rauch, S. L. (2000). Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biological Psychiatry, 48(2), 99–109.PubMedCrossRefGoogle Scholar
  44. Manoach, D. S., White, N., Lindgren, K. A., Heckers, S., Coleman, M. J., Dubal, S., Goff, D. C., & Holzman, P. S. (2005). Intact hemispheric specialization for spatial and shape working memory in schizophrenia. Schizophrenia Research, 78(1), 1–12.PubMedCrossRefGoogle Scholar
  45. Manoliu, A., Riedl, V., Doll, A., Bauml, J. G., Muhlau, M., Schwerthoffer, D., et al. (2013). Insular dysfunction reflects altered between-network connectivity and severity of negative symptoms in schizophrenia during psychotic remission. Frontiers in Human Neuroscience, 7, 216.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Manoliu, A., Riedl, V., Zherdin, A., Muhlau, M., Schwerthoffer, D., Scherr, M., et al. (2014). Aberrant dependence of default mode/central executive network interactions on anterior insular salience network activity in schizophrenia. Schizophrenia Bulletin, 40(2), 428–437.PubMedCrossRefGoogle Scholar
  47. Matsuo, K., Chen, S. H. A., Liu, C. M., Liu, C. C., Hwang, T. J., Hsieh, M. H., Chien, Y. L., Hwu, H. G., & Tseng, W. Y. I. (2013). Stable signatures of schizophrenia in the cortical-subcortical-cerebellar network using fMRI of verbal working memory. Schizophrenia Research, 151(1–3), 133–140.PubMedCrossRefGoogle Scholar
  48. McIntosh, A. R. (2000). Towards a network theory of cognition. Neural Networks, 13(8–9), 861–870.PubMedCrossRefGoogle Scholar
  49. Meisenzahl, E. M., Scheuerecker, J., Zipse, M., Ufer, S., Wiesmann, M., Frodl, T., Koutsouleris, N., Zetzsche, T., Schmitt, G., Riedel, M., Spellmann, I., Dehning, S., Linn, J., Brückmann, H., & Möller, H. J. (2006). Effects of treatment with the atypical neuroleptic quetiapine on working memory function: A functional MRI follow-up investigation. European Archives of Psychiatry and Clinical Neuroscience, 256(8), 522–531.PubMedCrossRefGoogle Scholar
  50. Mendrek, A., Laurens, K. R., Kiehl, K. A., Ngan, E. T., Stip, E., & Liddle, P. F. (2004). Changes in distributed neural circuitry function in patients with first-episode schizophrenia. British Journal of Psychiatry, 185(3), 205–214.PubMedCrossRefGoogle Scholar
  51. Mendrek, A., Kiehl, K. A., Smith, A. M., Irwin, D., Forster, B. B., & Liddle, P. F. (2005). Dysfunction of a distributed neural circuitry in schizophrenia patients during a working-memory performance. Psychological Medicine, 35(2), 187–196.PubMedCrossRefGoogle Scholar
  52. Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15(10), 483–506.PubMedCrossRefGoogle Scholar
  53. Meyer-Lindenberg, A., Poline, J. B., Kohn, P. D., Holt, J. L., Egan, M. F., Weinberger, D. R., & Berman, K. F. (2001). Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. American Journal of Psychiatry, 158(11), 1809–1817.PubMedCrossRefGoogle Scholar
  54. Meyer-Lindenberg, A. S., Olsen, R. K., Kohn, P. D., Brown, T., Egan, M. F., Weinberger, D. R., & Berman, K. F. (2005). Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Archives of General Psychiatry, 62(4), 379–386.PubMedCrossRefGoogle Scholar
  55. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.PubMedCrossRefGoogle Scholar
  56. Minzenberg, M. J., Laird, A. R., Thelen, S., Carter, C. S., & Glahn, D. C. (2009). Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Archives of General Psychiatry, 66(8), 811–822.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Moran, L. V., Tagamets, M. A., Sampath, H., O'Donnell, A., Stein, E. A., Kochunov, P., et al. (2013). Disruption of anterior insula modulation of large-scale brain networks in schizophrenia. Biological Psychiatry, 74(6), 467–474.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Nekovarova, T., Fajnerova, I., Horacek, J., & Spaniel, F. (2014). Bridging disparate symptoms of schizophrenia: A triple network dysfunction theory. Frontiers in Behavioral Neuroscience, 8, 171.PubMedPubMedCentralGoogle Scholar
  59. Palaniyappan, L., & Liddle, P. F. (2012). Does the salience network play a cardinal role in psychosis? An emerging hypothesis of insular dysfunction. Journal of Psychiatry and Neuroscience, 37(1), 17–27.PubMedCrossRefGoogle Scholar
  60. Palaniyappan, L., Mallikarjun, P., Joseph, V., White, T. P., & Liddle, P. F. (2011a). Reality distortion is related to the structure of the salience network in schizophrenia. Psychological Medicine, 41(8), 1701–1708.PubMedCrossRefGoogle Scholar
  61. Palaniyappan, L., Mallikarjun, P., Joseph, V., White, T. P., & Liddle, P. F. (2011b). Regional contraction of brain surface area involves three large-scale networks in schizophrenia. Schizophrenia Research, 129(2–3), 163–168.PubMedCrossRefGoogle Scholar
  62. Palaniyappan, L., Balain, V., Radua, J., & Liddle, P. F. (2012). Structural correlates of auditory hallucinations in schizophrenia: A meta-analysis. Schizophrenia Research, 137(1–3), 169–173.PubMedCrossRefGoogle Scholar
  63. Palaniyappan, L., Simmonite, M., White, T. P., Liddle, E. B., & Liddle, P. F. (2013). Neural primacy of the salience processing system in schizophrenia. Neuron, 79(4), 814–828.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Perlstein, W. M., Carter, C. S., Noll, D. C., & Cohen, J. D. (2001). Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. American Journal of Psychiatry, 158(7), 1105–1113.PubMedCrossRefGoogle Scholar
  65. Perlstein, W. M., Dixit, N. K., Carter, C. S., Noll, D. C., & Cohen, J. D. (2003). Prefrontal cortex dysfunction mediates deficits in working memory and prepotent responding in schizophrenia. Biological Psychiatry, 53(1), 25–38.PubMedCrossRefGoogle Scholar
  66. Pomarol-Clotet, E., Salvador, R., Sarro, S., Gomar, J., Vila, F., Martinez, A., et al. (2008). Failure to deactivate in the prefrontal cortex in schizophrenia: Dysfunction of the default mode network? Psychological Medicine, 38(8), 1185–1193.PubMedCrossRefGoogle Scholar
  67. Pujol, N., Penades, R., Rametti, G., Catalan, R., Vidal-Pineiro, D., Palacios, E., et al. (2013). Inferior frontal and insular cortical thinning is related to dysfunctional brain activation/deactivation during working memory task in schizophrenic patients. Psychiatry Research: Neuroimaging, 214(2), 94–101.PubMedCrossRefGoogle Scholar
  68. Quide, Y., Morris, R. W., Shepherd, A. M., Rowland, J. E., & Green, M. J. (2013). Task-related fronto-striatal functional connectivity during working memory performance in schizophrenia. Schizophrenia Research, 150(2–3), 468–475.PubMedCrossRefGoogle Scholar
  69. Quintana, J., Wong, T., Ortiz-Portillo, E., Kovalik, E., Davidson, T., Marder, S. R., & Mazziotta, J. C. (2003). Prefrontal-posterior parietal networks in schizophrenia: Primary dysfunctions and secondary compensations. Biological Psychiatry, 53(1), 12–24.PubMedCrossRefGoogle Scholar
  70. Ragland, J. D., Blumenfeld, R. S., Ramsay, I. S., Yonelinas, A., Yoon, J., Solomon, M., Carter, C. S., & Ranganath, C. (2012). Neural correlates of relational and item-specific encoding during working and long-term memory in schizophrenia. Neuroimage, 59(2), 1719–1726.PubMedCrossRefGoogle Scholar
  71. Salgado-Pineda, P., Junque, C., Vendrell, P., Baeza, I., Bargallo, N., Falcon, C., et al. (2004). Decreased cerebral activation during CPT performance: Structural and functional deficits in schizophrenic patients. Neuroimage, 21(3), 840–847.PubMedCrossRefGoogle Scholar
  72. Sambataro, F., Murty, V. P., Callicott, J. H., Tan, H. Y., Das, S., Weinberger, D. R., & Mattay, V. S. (2010). Age-related alterations in default mode network: Impact on working memory performance. Neurobiology of Aging, 31(5), 839–852.PubMedCrossRefGoogle Scholar
  73. Scheuerecker, J., Ufer, S., Zipse, M., Frodl, T., Koutsouleris, N., Zetzsche, T., Wiesmann, M., Albrecht, J., Brückmann, H., Schmitt, G., Möller, H. J., & Meisenzahl, E. M. (2008). Cerebral changes and cognitive dysfunctions in medication-free schizophrenia - an fMRI study. Journal of Psychiatric Research, 42(6), 469–476.PubMedCrossRefGoogle Scholar
  74. Schlosser, R. G. M., Koch, K., Wagner, G., Nenadic, I., Roebel, M., Schachtzabel, C., et al. (2008). Inefficient executive cognitive control in schizophrenia is preceded by altered functional activation during information encoding: An fMRI study. Neuropsychologia, 46(1), 336–347.PubMedCrossRefGoogle Scholar
  75. Schneider, F., Habel, U., Reske, M., Kellermann, T., Stocker, T., Shah, N. J., et al. (2007). Neural correlates of working memory dysfunction in first-episode schizophrenia patients: An fMRI multi-center study. Schizophrenia Research, 89(1–3), 198–210.PubMedCrossRefGoogle Scholar
  76. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27(9), 2349–2356.PubMedCrossRefGoogle Scholar
  77. Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12569–12574.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Tan, H. Y., Choo, W. C., Fones, C. S., & Chee, M. W. (2005). fMRI study of maintenance and manipulation processes within working memory in first-episode schizophrenia. American Journal of Psychiatry, 162(10), 1849–1858.PubMedCrossRefGoogle Scholar
  79. Tan, H. Y., Sust, S., Buckholtz, J. W., Mattay, V. S., Meyer-Lindenberg, A., Egan, M. F., et al. (2006). Dysfunctional prefrontal regional specialization and compensation in schizophrenia. American Journal of Psychiatry, 163(11), 1969–1977.PubMedCrossRefGoogle Scholar
  80. Thermenos, H. W., Goldstein, J. M., Buka, S. L., Poldrack, R. A., Koch, J. K., Tsuang, M. T., & Seidman, L. J. (2005). The effect of working memory performance on functional MRI in schizophrenia. Schizophrenia Research, 74(2–3), 179–194.PubMedCrossRefGoogle Scholar
  81. Turkeltaub, P. E., Eickhoff, S. B., Laird, A. R., Fox, M., Wiener, M., & Fox, P. (2012). Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Human Brain Mapping, 33(1), 1–13.PubMedCrossRefGoogle Scholar
  82. Walter, H., Wunderlich, A. P., Blankenhorn, M., Schafer, S., Tomczak, R., Spitzer, M., et al. (2003). No hypofrontality, but absence of prefrontal lateralization comparing verbal and spatial working memory in schizophrenia. Schizophrenia Research, 61(2–3), 175–184.PubMedCrossRefGoogle Scholar
  83. Walter, H., Vasic, N., Hose, A., Spitzer, M., & Wolf, R. C. (2007). Working memory dysfunction in schizophrenia compared to healthy controls and patients with depression: Evidence from event-related fMRI. Neuroimage, 35(4), 1551–1561.PubMedCrossRefGoogle Scholar
  84. Weinberger, D. R., Berman, K. F., & Zec, R. F. (1986). Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Archives of General Psychiatry, 43(2), 114–124.PubMedCrossRefGoogle Scholar
  85. Whitfield-Gabrieli, S., Thermenos, H. W., Milanovic, S., Tsuang, M. T., Faraone, S. V., McCarley, R. W., Shenton, M. E., Green, A. I., Nieto-Castanon, A., LaViolette, P., Wojcik, J., Gabrieli, J. D. E., & Seidman, L. J. (2009). Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 106(4), 1279–1284.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Wykes, T., Brammer, M., Mellers, J., Bray, P., Reeder, C., Williams, C., & Corner, J. (2002). Effects on the brain of a psychological treatment: Cognitive remediation therapy: Functional magnetic resonance imaging in schizophrenia. British Journal of Psychiatry, 181(2), 144–152.PubMedCrossRefGoogle Scholar
  87. Yoo, S. S., Choi, B. G., Juh, R. H., Park, J. M., Pae, C. U., Kim, J. J., et al. (2005). Working memory processing of facial images in schizophrenia: fMRI investigation. International Journal of Neuroscience, 115(3), 351–366.PubMedCrossRefGoogle Scholar
  88. Zhou, L., Pu, W., Wang, J., Liu, H., Wu, G., Liu, C., Mwansisya, T. E., Tao, H., Chen, X., Huang, X., Lv, D., Xue, Z., Shan, B., & Liu, Z. (2016). Inefficient DMN suppression in schizophrenia patients with impaired cognitive function but not patients with preserved cognitive function. Scientific Reports, 6, 21657.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Brainnetome Center, Institute of AutomationChinese Academy of SciencesBeijingChina
  2. 2.National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of AutomationChinese Academy of SciencesBeijingChina
  5. 5.The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduChina
  6. 6.The Queensland Brain InstituteUniversity of QueenslandBrisbaneAustralia

Personalised recommendations