Advertisement

Fitness, independent of physical activity is associated with cerebral blood flow in adults at risk for Alzheimer’s disease

  • Ryan J. Dougherty
  • Elizabeth A. Boots
  • Jacob B. Lindheimer
  • Aaron J. Stegner
  • Stephanie Van Riper
  • Dorothy F. Edwards
  • Catherine L. Gallagher
  • Cynthia M. Carlsson
  • Howard A. Rowley
  • Barbara B. Bendlin
  • Sanjay Asthana
  • Bruce P. Hermann
  • Mark A. Sager
  • Sterling C. Johnson
  • Ozioma C. Okonkwo
  • Dane B. CookEmail author
ORIGINAL RESEARCH

Abstract

Patterns of decreased resting cerebral blood flow (CBF) within the inferior temporal gyri, angular gyri, and posterior cingulate are a feature of aging and Alzheimer’s disease (AD) and have shown to be predictive of cognitive decline among older adults. Fitness and physical activity are both associated with many indices of brain health and may positively influence CBF, however, the majority of research to date has examined these measures in isolation, leaving the potential independent associations unknown. The purpose of this study was to determine the unique contributions of fitness and physical activity when predicting CBF in cognitively healthy adults at risk for AD. One hundred participants (63% female) from the Wisconsin Registry for Alzheimer’s Prevention underwent a maximal exercise test, physical activity monitoring, and a 3-D arterial spin labeling magnetic resonance imaging scan. For the entire sample, fitness was significantly associated with CBF while accounting for physical activity, age, gender, APOE ε4, family history of AD, education, and handedness (p = .026). Further, fitness explained significantly more variance than the combined effect of the covariates on CBF (R2 change = .059; p = .047). These results appear to be gender dependent, our data suggest fitness level, independent of physical activity, is associated with greater CBF in regions that are known to decline with age and AD for female (p = .011), but not male participants.

Keywords

Cardiorespiratory fitness Physical fitness \( \dot{\mathrm{V}} \)O2peak Arterial spin labeling Accelerometer 

Notes

Acknowledgements

The authors gratefully acknowledge Jennifer Oh for her assistance in the data analysis and the support of researchers and staff at the University of Wisconsin-Madison for their assistance in recruitment and data collection. Above all, the authors thank their dedicated volunteers for their participation in this research.

This work was supported by National Institute on Aging grants K23 AG045957 (OCO), R21 AG051858 (OCO), R01 AG027161 (SCJ), R01 AG021155 (SCJ), P50 AG033514 (SA); and by a Clinical and Translational Science Award (UL1RR025011) to the University of Wisconsin, Madison. Portions of this research were supported by the Extendicare Foundation, the Alzheimer’s Association, Wisconsin Alumni Research Foundation, the Helen Bader Foundation, Northwestern Mutual Foundation, and the Veterans Administration including facilities and resources at the Geriatric Research Education and Clinical Center of the William S. Middleton Memorial Veterans Hospital, Madison, WI. Ryan J. Dougherty was supported by a National Research Service Award from the National Institute on Aging of the National Institutes of Health under Award Number F31AG062009. Jacob B. Lindheimer was supported by Career Development Award Number IK2 CX001679 from the United States (U.S.) Department of Veterans Affairs Clinical Sciences R&D (CSR&D) Service. The contents do not represent the views of the National Institutes of Health, Department of Veterans Affairs or the United States Government.

Compliance with ethical standards

Conflict of interest

Ryan J. Dougherty, Elizabeth A. Boots, Jacob B. Lindheimer, Aaron J. Stegner, Stephanie Van Riper, Dorothy F. Edwards, Catherine L. Gallagher, Cynthia M. Carlsson, Howard A. Rowley, Barbara B. Bendlin, Sanjay Asthana, Bruce P. Hermann, Mark A. Sager, Sterling C. Johnson, Ozioma C. Okonkwo, and Dane B. Cook declare no conflicts of interest.

Ethical approval and informed consent

All procedures followed were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

References

  1. Alfini, A. J., Weiss, L. R., Leitner, B. P., Smith, T. J., Hagberg, J. M., & Smith, J. C. (2016). Hippocampal and cerebral blood flow after exercise cessation in master athletes. Frontiers in Aging Neuroscience, 8.Google Scholar
  2. Alsop, D. C., Dai, W., Grossman, M., & Detre, J. A. (2010). Arterial spin labeling blood flow MRI: Its role in the early characterization of Alzheimer's disease. Journal of Alzheimer's Disease, 20(3), 871–880.PubMedCrossRefGoogle Scholar
  3. American College of Sports Medicine, ed. (2013). ACSM's health-related physical fitness assessment manual. Lippincott Williams & Wilkins.Google Scholar
  4. Angevaren, M., Aufdemkampe, G., Verhaar, H. J., Aleman, A., & Vanhees, L. (2008). Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database of Systematic Reviews, 3(3).Google Scholar
  5. Austin, B. P., Nair, V. A., Meier, T. B., Xu, G., Rowley, H. A., Carlsson, C. M., Johnson, S. C., & Prabhakaran, V. (2011). Effects of hypoperfusion in Alzheimer's disease. Journal of Alzheimer's Disease, 26(s3), 123–133.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baker, L. D., Frank, L. L., Foster-Schubert, K., Green, P. S., Wilkinson, C. W., McTiernan, A., ... & Duncan, G. E. (2010). Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Archives of neurology, 67(1), 71-79.Google Scholar
  7. Balke, B., & Ware, R. W. (1959). An experimental study of physical fitness of air force personnel. United States Armed Forces Medical Journal, 10(6), 675–688.PubMedGoogle Scholar
  8. Barha, C. K., Davis, J. C., Falck, R. S., Nagamatsu, L. S., & Liu-Ambrose, T. (2017). Sex differences in exercise efficacy to improve cognition: A systematic review and meta-analysis of randomized controlled trials in older humans. Frontiers in Neuroendocrinology, 46, 71–85.PubMedCrossRefGoogle Scholar
  9. Barnes, J. N. (2017). Sex-specific factors regulating pressure and flow. Experimental Physiology, 102(11), 1385–1392.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Barnes, J. N., & Corkery, A. T. (2018). Exercise improves vascular function, but does this Translate to the Brain?. Brain Plasticity, (Preprint), 1–15.Google Scholar
  11. Benedictus, M. R., Leeuwis, A. E., Binnewijzend, M. A., Kuijer, J. P., Scheltens, P., Barkhof, F., ... & Prins, N. D. (2017). Lower cerebral blood flow is associated with faster cognitive decline in Alzheimer’s disease. European Radiology, 27(3), 1169–1175.Google Scholar
  12. Billinger, S. A., Vidoni, E. D., Morris, J. K., Thyfault, J. P., & Burns, J. M. (2017). Exercise test performance reveals evidence of the cardiorespiratory fitness hypothesis. Journal of Aging and Physical Activity, 25(2), 240–246.PubMedCrossRefGoogle Scholar
  13. Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise, 14, 377–381.PubMedGoogle Scholar
  14. Bouchard, C., & Rankinen, T. (2001). Individual differences in response to regular physical activity. Medicine and Science in Sports and Exercise, 33.6(Suppl), S446–S451.CrossRefGoogle Scholar
  15. Bouchard, C., An, P., Rice, T., Skinner, J. S., Wilmore, J. H., Gagnon, J., Pérusse, L., Leon, A. S., & Rao, D. C. (1999). Familial aggregation of Vo 2 max response to exercise training: Results from the HERITAGE family study. Journal of Applied Physiology, 87(3), 1003–1008.PubMedCrossRefGoogle Scholar
  16. Bouchard, C., Sarzynski, M. A., Rice, T. K., Kraus, W. E., Church, T. S., Sung, Y. J., Rao, D. C., & Rankinen, T. (2011). Genomic predictors of the maximal O 2 uptake response to standardized exercise training programs. Journal of Applied Physiology, 110(5), 1160–1170.PubMedCrossRefGoogle Scholar
  17. Brown, A. D., McMorris, C. A., Longman, R. S., Leigh, R., Hill, M. D., Friedenreich, C. M., & Poulin, M. J. (2010). Effects of cardiorespiratory fitness and cerebral blood flow on cognitive outcomes in older women. Neurobiology of Aging, 31(12), 2047–2057.PubMedCrossRefGoogle Scholar
  18. Burzynska, A. Z., Chaddock-Heyman, L., Voss, M. W., Wong, C. N., Gothe, N. P., Olson, E. A., et al. (2014). Physical activity and cardiorespiratory fitness are beneficial for white matter in low-fit older adults. PLoS One, 9(9), e107413.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Carrick-Ranson, G., Hastings, J. L., Bhella, P. S., Fujimoto, N., Shibata, S., Palmer, M. D., Boyd, K., Livingston, S., Dijk, E., & Levine, B. D. (2014). The effect of lifelong exercise dose on cardiovascular function during exercise. Journal of Applied Physiology, 116(7), 736–745.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Caspersen, C. J., Powell, K. E., & Christenson, G. M. (1985). Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Reports, 100(2), 126–131.PubMedPubMedCentralGoogle Scholar
  21. Chao, L. L., Buckley, S. T., Kornak, J., Schuff, N., Madison, C., Yaffe, K., Miller, B. L., Kramer, J. H., & Weiner, M. W. (2010). ASL perfusion MRI predicts cognitive decline and conversion from MCI to dementia. Alzheimer Disease and Associated Disorders, 24(1), 19–27.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chapman, S. B., Aslan, S., Spence, J. S., DeFina, L. F., Keebler, M. W., Didehbani, N., & Lu, H. (2013). Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging. Frontiers in Aging Neuroscience, 5, 75.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chen, Y., Wolk, D. A., Reddin, J. S., Korczykowski, M., Martinez, P. M., Musiek, E. S., ... & Detre, J. A. (2011). Voxel-level comparison of arterial spin-labeled perfusion MRI and FDG-PET in Alzheimer disease. Neurology, WNL-0b013e31823a0ef7.Google Scholar
  24. Colcombe, S., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14(2), 125–130.PubMedCrossRefGoogle Scholar
  25. Dai, W., Garcia, D., De Bazelaire, C., & Alsop, D. C. (2008). Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 60(6), 1488–1497.CrossRefGoogle Scholar
  26. Davenport, M. H., Hogan, D. B., Eskes, G. A., Longman, R. S., & Poulin, M. J. (2012). Cerebrovascular reserve: The link between fitness and cognitive function? Exercise and Sport Sciences Reviews, 40(3), 153–158.PubMedGoogle Scholar
  27. DeFina, L. F., Haskell, W. L., Willis, B. L., Barlow, C. E., Finley, C. E., Levine, B. D., & Cooper, K. H. (2015). Physical activity versus cardiorespiratory fitness: Two (partly) distinct components of cardiovascular health? Progress in Cardiovascular Diseases, 57(4), 324–329.PubMedCrossRefGoogle Scholar
  28. Dougherty, R. J., Ellingson, L. D., Schultz, S. A., Boots, E. A., Meyer, J. D., Lindheimer, J. B., et al. (2016). Meeting physical activity recommendations may be protective against temporal lobe atrophy in older adults at risk for Alzheimer's disease. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring, 4, 14–17.Google Scholar
  29. Dougherty, R. J., Schultz, S. A., Boots, E. A., Ellingson, L. D., Meyer, J. D., Van Riper, S., ... & Korcarz, C. E. (2017a). Relationships between cardiorespiratory fitness, hippocampal volume, and episodic memory in a population at risk for Alzheimer's disease. Brain and Behavior, 7(3).Google Scholar
  30. Dougherty, R. J., Schultz, S. A., Kirby, T. K., Boots, E. A., Oh, J. M., Edwards, D., Gallagher, C. L., Carlsson, C. M., Bendlin, B. B., Asthana, S., Sager, M. A., Hermann, B. P., Christian, B. T., Johnson, S. C., Cook, D. B., & Okonkwo, O. C. (2017b). Moderate physical activity is associated with cerebral glucose metabolism in adults at risk for Alzheimer’s disease. Journal of Alzheimer’s Disease : JAD, 58(4), 1089–1097.PubMedCrossRefGoogle Scholar
  31. Dougherty, R. J., Lindheimer, J. B., Stegner, A. J., Van Riper, S., Okonkwo, O. C., & Cook, D. B. (2018). An objective method to accurately measure cardiorespiratory fitness in older adults who cannot satisfy widely used oxygen consumption criteria. Journal of Alzheimer’s Disease, 61(2), 601–611.PubMedCrossRefGoogle Scholar
  32. Dyrstad, S. M., Hansen, B. H., Holme, I. M., & Anderssen, S. A. (2014). Comparison of self-reported versus accelerometer-measured physical activity. Medicine & Science in Sports & Exercise, 46(1), 99–106.CrossRefGoogle Scholar
  33. Eaton, C. B., Lapane, K. L., Garber, C. E., Assaf, A. R., Lasater, T. M., & Carleton, R. A. (1995). Physical activity, physical fitness, and coronary heart disease risk factors. Medicine and Science in Sports and Exercise, 27(3), 340–346.PubMedCrossRefGoogle Scholar
  34. Erickson, K. I., Leckie, R. L., & Weinstein, A. M. (2014). Physical activity, fitness, and gray matter volume. Neurobiology of Aging, 35, S20–S28.PubMedCrossRefGoogle Scholar
  35. Etnier, J. L., Nowell, P. M., Landers, D. M., & Sibley, B. A. (2006). A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Brain Research Reviews, 52(1), 119–130.PubMedCrossRefGoogle Scholar
  36. Garcia, D. M., Duhamel, G., & Alsop, D. C. (2005). Efficiency of inversion pulses for background suppressed arterial spin labeling. Magnetic Resonance in Medicine, 54(2), 366–372.PubMedCrossRefGoogle Scholar
  37. Haskell, W. L., Lee, I. M., Pate, R. R., Powell, K. E., Blair, S. N., Franklin, B. A., ... & Bauman, A. (2007). Physical activity and public health: Updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation, 116(9), 1081, 1093.Google Scholar
  38. Hayes, S. M., Alosco, M. L., Hayes, J. P., Cadden, C., Peterson, K. M., Allsup, K., Forman, D. E., Sperling, R. A., & Verfaellie, M. (2015). Physical activity is positively associated with episodic memory in aging. Journal of the International Neuropsychological Society, 21, 780–790.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hays, C. C., Zlatar, Z. Z., & Wierenga, C. E. (2016). The utility of cerebral blood flow as a biomarker of preclinical Alzheimer’s disease. Cellular and Molecular Neurobiology, 36(2), 167–179.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Iturria-Medina, Y., Sotero, R. C., Toussaint, P. J., Mateos-Perez, J. M., Evans, A. C., & Alzheimer’s Disease Neuroimaging Initiative. (2016). Early role of vascular dysregulation on late-onset Alzheimer/'s disease based on multifactorial data-driven analysis. Nature communications, 7.Google Scholar
  41. Jack, C. R., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M. W., ... & Trojanowski, J. Q. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. The Lancet Neurology, 9(1), 119–128.Google Scholar
  42. Johnson, N. A., Jahng, G. H., Weiner, M. W., Miller, B. L., Chui, H. C., Jagust, W. J., ... & Schuff, N. (2006, June). Pattern of cerebral hypoperfusion in Alzheimer's disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: Initial experience. In International Congress Series (Vol. 1290, pp. 108–122). Elsevier.Google Scholar
  43. Joyner, M. J., Barnes, J. N., Hart, E. C., Wallin, B. G., & Charkoudian, N. (2015). Neural control of the circulation: How sex and age differences interact in humans. Comprehensive Physiology, 5(1), 193–215.PubMedPubMedCentralGoogle Scholar
  44. Kaminsky, L. A., Arena, R., & Myers, J. (2015, November ). Reference standards for cardiorespiratory fitness measured with cardiopulmonary exercise testing: Data from the fitness registry and the importance of exercise national database. In Mayo Clinic Proceedings (Vol. 90, no. 11, pp. 1515-1523). Elsevier.Google Scholar
  45. Kampert, J. B., Blair, S. N., Barlow, C. E., & Kohl, H. W., III. (1996). Physical activity, physical fitness, and all-cause and cancer mortality: A prospective study of men and women. Annals of Epidemiology, 6(5), 452–457.PubMedCrossRefGoogle Scholar
  46. Kohrt, W. M., Malley, M. T., Coggan, A. R., Spina, R. J., Ogawa, T. A. K. E. S. H. I., Ehsani, A. A., ... & Holloszy, J. O. (1991). Effects of gender, age, and fitness level on response of VO2max to training in 60-71 yr olds. Journal of Applied Physiology, 71(5), 2004–2011.Google Scholar
  47. Kramer, A. F., Hahn, S., Cohen, N. J., Banich, M. T., McAuley, E., Harrison, C. R., Chason, J., Vakil, E., Bardell, L., Boileau, R. A., & Colcombe, A. (1999). Ageing, fitness and neurocognitive function. Nature, 400(6743), 418–419.PubMedCrossRefGoogle Scholar
  48. Landau, S. M., Harvey, D., Madison, C. M., Koeppe, R. A., Reiman, E. M., Foster, N. L., et al. (2011). Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiology of Aging, 32(7), 1207–1218.PubMedCrossRefGoogle Scholar
  49. Lee, D. C., Sui, X., Ortega, F. B., Kim, Y. S., Church, T. S., Winett, R. A., ... & Blair, S. N. (2010). Comparisons of leisure-time physical activity and cardiorespiratory fitness as predictors of all-cause mortality in men and women. British journal of sports medicine, bjsports66209.Google Scholar
  50. Lyden, K., Keadle, S. K., Staudenmayer, J., & Freedson, P. S. (2014). A method to estimate free-living active and sedentary behavior from an accelerometer. Medicine and Science in Sports and Exercise, 46(2), 386–397.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lu, H., Xu, F., Rodrigue, K. M., Kennedy, K. M., Cheng, Y., Flicker, B., ... & Park, D. C. (2010). Alterations in cerebral metabolic rate and blood supply across the adult lifespan. Cerebral cortex, 21(6), 1426–1434.Google Scholar
  52. Makizako, H., Liu-Ambrose, T., Shimada, H., Doi, T., Park, H., Tsutsumimoto, K., & Suzuki, T. (2015). Moderate-intensity physical activity, hippocampal volume, and memory in older adults with mild cognitive impairment. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 70, 480–486.CrossRefGoogle Scholar
  53. Middleton, L., Kirkland, S., & Rockwood, K. (2008). Prevention of CIND by physical activity: different impact on VCI-ND compared with MCI. Journal of the neurological sciences, 269(1–2), 80–84.Google Scholar
  54. Miller, V. M., Garovic, V. D., Kantarci, K., Barnes, J. N., Jayachandran, M., Mielke, M. M., Joyner, M. J., Shuster, L. T., & Rocca, W. A. (2013). Sex-specific risk of cardiovascular disease and cognitive decline: Pregnancy and menopause. Biology of Sex Differences, 4(1), 6.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Myers, J., Kaykha, A., George, S., Abella, J., Zaheer, N., Lear, S., Yamazaki, T., & Froelicher, V. (2004). Fitness versus physical activity patterns in predicting mortality in men. The American Journal of Medicine, 117(12), 912–918.PubMedCrossRefGoogle Scholar
  56. Nebel, R. A., Aggarwal, N. T., Barnes, L. L., Gallagher, A., Goldstein, J. M., Kantarci, K., et al. (2018). Understanding the impact of sex and gender in Alzheimer's disease: A call to action. Alzheimer's & Dementia., 14, 1171–1183.CrossRefGoogle Scholar
  57. Okonkwo, O. C., Xu, G., Oh, J. M., Dowling, N. M., Carlsson, C. M., Gallagher, C. L., ... & LaRue, A. (2014a). Cerebral blood flow is diminished in asymptomatic middle-aged adults with maternal history of Alzheimer's disease. Cerebral Cortex, 24(4), 978–988.Google Scholar
  58. Okonkwo, O. C., Schultz, S. A., Oh, J. M., Larson, J., Edwards, D., Cook, D., ... & Bendlin, B. B. (2014b). Physical activity attenuates age-related biomarker alterations in preclinical AD. Neurology, 83(19), 1753–1760.Google Scholar
  59. Park, M. S., Chung, S. Y., Chang, Y., & Kim, K. (2009). Physical activity and physical fitness as predictors of all-cause mortality in Korean men. Journal of Korean Medical Science, 24(1), 13–19.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Pereira, A. C., Huddleston, D. E., Brickman, A. M., Sosunov, A. A., Hen, R., McKhann, G. M., Sloan, R., Gage, F. H., Brown, T. R., & Small, S. A. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences, 104(13), 5638–5643.CrossRefGoogle Scholar
  61. Physical Activity Guidelines Advisory Committee. (2018). Physical activity guidelines advisory committee scientific report. Washington, DC: U.S. Department of Health and Human Services.Google Scholar
  62. Piercy K. L., Troiano R. P., Ballard R. M., Carlson, S. A., Fulton, J. E., Galuska, D. A., George, S. M., Olson, R. D. (2018). The physical activity guidelines for Americans. JAMA. Published online November 12, 2018.  https://doi.org/10.1001/jama.2018.14854
  63. Prince, S. A., Adamo, K. B., Hamel, M. E., Hardt, J., Gorber, S. C., & Tremblay, M. (2008). A comparison of direct versus self-report measures for assessing physical activity in adults: A systematic review. International Journal of Behavioral Nutrition and Physical Activity, 5(1), 56.PubMedCrossRefGoogle Scholar
  64. Sager, M. A., Hermann, B., & La Rue, A. (2005). Middle-aged children of persons with Alzheimer’s disease: APOE genotypes and cognitive function in the Wisconsin registry for Alzheimer’s prevention. Journal of Geriatric Psychiatry and Neurology, 18(4), 245–249.PubMedCrossRefGoogle Scholar
  65. Saltin, B., Blomqvist, G., Mitchell, J. H., et al. (1968). Response to exercise after bed rest and after training: a longitudinal study of adaptive changes in oxygen transport and body composition. Circulation, 37/38(suppl VII), VII-1–VII-78.Google Scholar
  66. Seals, D. R., Hagberg, J. M., Hurley, B. F., Ehsani, A. A., & Holloszy, J. O. (1984). Endurance training in older men and women. I. Cardiovascular responses to exercise. Journal of applied physiology, 57(4), 1024–1029.PubMedCrossRefGoogle Scholar
  67. Seals, D. R., DeSouza, C. A., Donato, A. J., & Tanaka, H. (2008). Habitual exercise and arterial aging. Journal of Applied Physiology, 105(4), 1323–1332.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Skinner, J. S., Wilmore, K. M., Krasnoff, J. B., JaskÓlski, A., JaskÓlska, A., Gagnon, J., ... & Bouchard, C. (2000). Adaptation to a standardized training program and changes in fitness in a large, heterogeneous population: The HERITAGE family study. Medicine and Science in Sports and Exercise, 32(1), 157–161.Google Scholar
  69. Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer's disease. The Lancet Neurology, 11(11), 1006–1012.Google Scholar
  70. Tager, I. B., Hollenberg, M., & Satariano, W. A. (1998). Association between self-reported leisure-time physical activity and measures of cardiorespiratory fitness in an elderly population. American Journal of Epidemiology, 147(10), 921–931.PubMedCrossRefGoogle Scholar
  71. Tarumi, T., & Zhang, R. (2017). Cerebral blood flow in normal aging adults: Cardiovascular determinants, clinical implications, and aerobic fitness. Journal of Neurochemistry.Google Scholar
  72. Thambisetty, M., Beason-Held, L., An, Y., Kraut, M. A., & Resnick, S. M. (2010). APOE ε4 genotype and longitudinal changes in cerebral blood flow in normal aging. Archives of Neurology, 67(1), 93–98.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Thomas, B. P., Yezhuvath, U. S., Tseng, B. Y., Liu, P., Levine, B. D., Zhang, R., & Lu, H. (2013). Life-long aerobic exercise preserved baseline cerebral blood flow but reduced vascular reactivity to CO2. Journal of Magnetic Resonance Imaging, 38(5), 1177–1183.PubMedCrossRefGoogle Scholar
  74. Troiano, R. P., Berrigan, D., Dodd, K. W., Masse, L. C., Tilert, T., & McDowell, M. (2008). Physical activity in the United States measured by accelerometer. Medicine and Science in Sports and Exercise, 40(1), 181–188.PubMedCrossRefGoogle Scholar
  75. Voss, M. W., Weng, T. B., Burzynska, A. Z., Wong, C. N., Cooke, G. E., Clark, R., ... & McAuley, E. (2016). Fitness, but not physical activity, is related to functional integrity of brain networks associated with aging. Neuroimage, 131, 113–125.Google Scholar
  76. Wang, Z., Das, S. R., Xie, S. X., Arnold, S. E., Detre, J. A., Wolk, D. A., & Alzheimer's Disease Neuroimaging Initiative. (2013). Arterial spin labeled MRI in prodromal Alzheimer's disease: A multi-site study. NeuroImage: Clinical, 2, 630–636.CrossRefGoogle Scholar
  77. Wei, M., Gibbons, L. W., Kampert, J. B., Nichaman, M. Z., & Blair, S. N. (2000). Low cardiorespiratory fitness and physical inactivity as predictors of mortality in men with type 2 diabetes. Annals of Internal Medicine, 132(8), 605–611.PubMedCrossRefGoogle Scholar
  78. Wierenga, C. E., Clark, L. R., Dev, S. I., Shin, D. D., Jurick, S. M., Rissman, R. A., Liu, T. T., & Bondi, M. W. (2013). Interaction of age and APOE genotype on cerebral blood flow at rest. Journal of Alzheimer's Disease, 34(4), 921–935.PubMedCrossRefGoogle Scholar
  79. Wierenga, C. E., Hays, C. C., & Zlatar, Z. Z. (2014). Cerebral blood flow measured by arterial spin labeling MRI as a preclinical marker of Alzheimer's disease. Journal of Alzheimer's Disease, 42(s4), S411–S419.PubMedCrossRefGoogle Scholar
  80. Xu, G., Rowley, H. A., Wu, G., Alsop, D. C., Shankaranarayanan, A., Dowling, M., Christian, B. T., Oakes, T. R., & Johnson, S. C. (2010). Reliability and precision of pseudo-continuous arterial spin labeling perfusion MRI on 3.0 T and comparison with 15O-water PET in elderly subjects at risk for Alzheimer's disease. NMR in Biomedicine, 23(3), 286–293.PubMedPubMedCentralGoogle Scholar
  81. Ye, F. Q., Frank, J. A., Weinberger, D. R., McLaughlin, A. C. (2000). Noise reduction in 3D perfusion imaging by attenuating the static signal in arterial spin tagging (ASSIST). Magn Reson Med. 44, 92–100.Google Scholar
  82. Zimmerman, B., Sutton, B. P., Low, K. A., Fletcher, M. A., Tan, C. H., Schneider-Garces, N., ... & Fabiani, M. (2014). Cardiorespiratory fitness mediates the effects of aging on cerebral blood flow. Frontiers in Aging Neuroscience, 6: 59.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ryan J. Dougherty
    • 1
    • 2
    • 3
  • Elizabeth A. Boots
    • 4
    • 5
  • Jacob B. Lindheimer
    • 1
    • 2
  • Aaron J. Stegner
    • 1
    • 2
  • Stephanie Van Riper
    • 1
    • 2
  • Dorothy F. Edwards
    • 2
    • 3
    • 6
  • Catherine L. Gallagher
    • 6
    • 7
    • 8
  • Cynthia M. Carlsson
    • 3
    • 6
    • 7
  • Howard A. Rowley
    • 3
  • Barbara B. Bendlin
    • 3
    • 6
    • 7
  • Sanjay Asthana
    • 3
    • 6
    • 7
  • Bruce P. Hermann
    • 3
    • 6
  • Mark A. Sager
    • 3
    • 6
  • Sterling C. Johnson
    • 3
    • 6
    • 7
  • Ozioma C. Okonkwo
    • 3
    • 6
    • 7
  • Dane B. Cook
    • 1
    • 2
    Email author
  1. 1.William S. Middleton Memorial Veterans HospitalMadisonUSA
  2. 2.Department of KinesiologyUniversity of Wisconsin School of EducationMadisonUSA
  3. 3.Wisconsin Alzheimer’s Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA
  4. 4.Department of PsychologyUniversity of Illinois at ChicagoChicagoUSA
  5. 5.Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoUSA
  6. 6.Wisconsin Alzheimer’s InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA
  7. 7.Geriatric Research Education and Clinical CenterWilliam S. Middleton Memorial Veterans HospitalMadisonUSA
  8. 8.Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA

Personalised recommendations