Postchemotherapy hippocampal functional connectivity patterns in patients with breast cancer: a longitudinal resting state functional MR imaging study

  • Yun Feng
  • Dilihumaer Tuluhong
  • Zhao Shi
  • Li Juan Zheng
  • Tao Chen
  • Guang Ming Lu
  • Shaohua WangEmail author
  • Long Jiang ZhangEmail author


The hippocampus plays a key role in cognitive function and emotion regulation due to its wide connection with the whole brain. This study examined the acute effect of chemotherapy on hippocampal and subfield functional connectivity and neuropsychological status in breast cancer patients (BC). This IRB approved study included 29 BC and 25 age matched healthy controls (HCs) who underwent resting state functional magnetic resonance imaging (Rs-fMRI), neuropsychological tests and blood examinations at baseline and one week after completing chemotherapy or in the same time interval. Within-group comparisons and group-by-time interactions analysis of hippocampus- and subregion- based functional connectivity were performed between the two groups. Functional connectivity changes were correlated with changes of blood examination and neuropsychological test scores in the BC group. The BC group had higher depression and anxiety scores, poorer performance on visual mobility, auditory memory and executive function than HCs (p < 0.05), and significantly abnormal estrodiol, total cholesterol and triglycerides (p < 0.05). BC survivors showed significant hippocampal functional connectivity changes mainly in the left insula, temporal lobe (Gaussian Random Field theory correction, P < 0.001) and the left inferior frontal gyrus (P < 0.01). The functional connections from the anterior hippocampus to the left temporal lobe were greater than the posterior hippocampus (P < 0.05). The hippocampus functional connectivity alterations were closely related to changes in depression scores, estrodiol and triglycerides (all p < 0.05). Chemotherapy induced especially anterior hippocampal functional connectivity abnormality, which is related to depression symptom, estrodiol and triglycerides disorders.


Breast cancer Chemotherapy Hippocampus Functional connectivity Resting state functional magnetic resonance imaging 



This study was supported by the grants from the Natural Scientific Foundation of China (81322020 and 81230032 to L.J.Z.).

Compliance and ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All the procedures involving human subjects were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

We confirm that informed consent was obtained from all the participants included in this study.


  1. Antkiewicz-Michaluk, L., Krzemieniecki, K., Romanska, I., Michaluk, J., & Krygowska-Wajs, A. (2016). Acute treatment with doxorubicin induced neurochemical impairment of the function of dopamine system in rat brain structures. Pharmacological Reports, 68(3), 627–630.PubMedGoogle Scholar
  2. Apple, A. C., Ryals, A. J., Alpert, K. I., Wagner, L. I., Shih, P. A., Dokucu, M., Cella, D., Penedo, F. J., Voss, J. L., & Wang, L. (2017). Subtle hippocampal deformities in breast cancer survivors with reduced episodic memory and self-reported cognitive concerns. Neuroimage Clinical, 14(C), 685–691.PubMedPubMedCentralGoogle Scholar
  3. Battaglia, F. P., Benchenane, K., Sirota, A., Pennartz, C. M., & Wiener, S. I. (2011). The hippocampus: Hub of brain network communication for memory. Trends in Cognitive Sciences, 15(7), 310–318.PubMedGoogle Scholar
  4. Bergouignan, L., Lefranc, J. P., Chupin, M., Morel, N., Spano, J. P., & Fossati, P. (2011). Breast cancer affects both the hippocampus volume and the episodic autobiographical memory retrieval. PLoS One, 6(10), e25349.PubMedPubMedCentralGoogle Scholar
  5. Berman, M. G.,Askren, M.K., Jung,M., Therrien, B., Peltier, S., Noll, D.C., et al. (2014). Pretreatment worry and neurocognitive responses in women with breast cancer. Health Psychology, 33(3), 222–231.
  6. Billiet, T., Emsell, L., Vandenbulcke, M., Peeters, R., Christiaens, D., Leemans, A., van Hecke, W., Smeets, A., Amant, F., Sunaert, S., & Deprez, S. (2018). Recovery from chemotherapy-induced white matter changes in young breast cancer survivors? Brain Imaging and Behavior, 12, 64–77. Scholar
  7. Bloch, M., Daly, R. C., & Rubinow, D. R. (2003). Endocrine factors in the etiology of postpartum depression. Comprehensive Psychiatry, 44, 234–246.PubMedGoogle Scholar
  8. Bruno, J., Hosseini, S. M., & Kesler, S. (2012). Altered resting state functional brain network topology in chemotherapy-treated breast cancer survivors. Neurobiology of Disease, 48(3), 329–338.PubMedPubMedCentralGoogle Scholar
  9. Chandra, A. R., Margaret, G., Jonathan, A. P., Stig, B., & Nancy, L. P. (2010). Serum lipid levels and cognitive change in late life. Journal of the American Geriatrics Society, 58(3), 501–509.Google Scholar
  10. Chen, A. C., & Etkin, A. (2013). Hippocampal network connectivity and activation differentiates post-traumatic stress disorder from generalized anxiety disorder. Neuropsychopharmacology Official Publication of the American College of Neuropsychopharmacology, 38(10), 1889–1898.PubMedPubMedCentralGoogle Scholar
  11. Chen, X., He, X., Tao, L., Li, J., Wu, J., Zhu, C., Yu, F., Zhang, L., Zhang, J., Qiu, B., Yu, Y., & Wang, K. (2017). The working memory and dorsolateral prefrontal-hippocampal functional connectivity changes in long-term survival breast cancer patients treated with tamoxifen. International Journal of Neuropsychopharmacology, 20(5), 374–382.PubMedPubMedCentralGoogle Scholar
  12. Cheng, H., Wen, L., Liang, G., Han, X., Huang, Z., Hong, Z., et al. (2017). Altered resting-state hippocampal functional networks associated with chemotherapy-induced prospective memory impairment in breast cancer survivors. Scientific Reports, 7, 45135.PubMedPubMedCentralGoogle Scholar
  13. Eichenbaum, H. H. (2004). Cognitive processes and neural representations that underlie declarative memory. Neuron, 44(1), 109–120.PubMedGoogle Scholar
  14. Eichenbaum, H., Yonelinas, A. P., & Ranganath, C. (2007). The medial temporal lobe and recognition memory. Annual Review of Neuroscience, 30(1), 123–152.PubMedPubMedCentralGoogle Scholar
  15. Espeland, M. A., Rapp, S. R., Shumaker, S. A., Brunner, R., Manson, J. A. E., & Sherwin, B. B., et al. (2004). Conjugated equine estrogens and global cognitive function in postmenopausal women: women's health initiative memory study. JAMA, 291(24), 2959–2968.Google Scholar
  16. Evered, L., Scott, D. A., Silbert, B., & Maruff, P. (2011). Postoperative cognitive dysfunction is independent of type of surgery and anesthetic. Anesthesia & Analgesia, 112(5), 1179–1185.Google Scholar
  17. Fanselow, M. S., & Dong, H. W. (2010). Are the dorsal and ventral hippocampus functionally distinct structures?. Neuron, 65(1), 7–19.
  18. Inagaki, M., Yoshikawa, E., Matsuoka, Y., Sugawara, Y., Nakano, T., Akechi, T., Wada, N., Imoto, S., Murakami, K., Uchitomi, Y., & and The Breast Cancer Survivors' Brain MRI Database Group. (2007). Smaller regional volumes of gray and white matter demonstrated in breast cancer survivors exposed to adjuvant chemotherapy. Cancer, 109, 146–156. Scholar
  19. Jung, M. S., Zhang, M., Askren, M. K., Berman, M. G., Peltier, S., Hayes, D. F., Therrien, B., Reuter-Lorenz, P. A., & Cimprich, B. (2017). Cognitive dysfunction and symptom burden in women treated for breast cancer: A prospective behavioral and fMRI analysis. Brain Imaging and Behavior, 11, 86–97. Scholar
  20. Kahn, I., Andrews-Hanna, J. R., Vincent, J. L., Snyder, A. Z., & Buckner, R. L. (2008). Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. Journal of Neurophysiology, 100(1), 129–139.PubMedPubMedCentralGoogle Scholar
  21. Kesler, S. R. (2014). Default mode network as a potential biomarker of chemotherapy-related brain injury. Neurobiol.Aging. 35, Suppl 2:S11–9.
  22. Kesler, S. R., & Blayney, D. W. (2016). Neurotoxic effects of anthracycline- vsnonanthracycline-based chemotherapy on cognition in breast cancer survivors. JAMA Oncology, 2, 185–192. Scholar
  23. Kesler, S. R., Wefel, J. S., Hosseini, S. M. H., Cheung, M., Watson, C. L., & Hoeft, F. (2013). Default mode network connectivity distinguishes chemotherapy-treated breast cancer survivors from controls. Pnas, 110(28), 11600–11605.PubMedGoogle Scholar
  24. Kesler, S. R., Watson, C. L., & Blayney, D. W. (2015). Brain network alterations and vulnerability to simulated neurodegeneration in breast cancer. Neurobiology of Aging, 36, 2429–2442. Scholar
  25. Kesler, S. R., Adams, M., Packer, M., Rao, V., Henneghan, A. M., Blayney, D. W., & Palesh, O. (2017). Disrupted brain network functional dynamics and hyper- correlation of structural and functional connectome topology in patients with breast cancer prior to treatment. Brain and Behavior: A Cognitive Neuroscience Perspective, 7, e00643. Scholar
  26. Kim, O. Y., Park, S., Han, W., Hong, Y., & Ha, E. (2009). Serum high-density lipoprotein cholesterol and breast cancer risk by menopausal status, body mass index, and hormonal receptor in Korea. Cancer Epidemiology, Biomarkers & Prevention, 18(2), 508–515.Google Scholar
  27. Koppelmans, V., Vernooij, M. W., Boogerd, W., Seynaeve, C., Ikram, M. A., Breteler, M. M., et al. (2015). Prevalence of cerebral small-vessel disease in long-term breast cancer survivors exposed to both adjuvant radiotherapy and chemotherapy. Breast Diseases A Year Book Quarterly, 26(4), 353–353.Google Scholar
  28. Lepage, C., Smith, A. M., Moreau, J., Barlow-Krelina, E., Wallis, N., Collins, B., MacKenzie, J., & Scherling, C. (2014). A prospective study of grey matter and cognitive function alterations in chemotherapy-treated breast cancer patients. Springerplus, 3, 444–454. Scholar
  29. Loo, W. T., Yip, M. C., Chow, L. W., Liu, Q., Ng, E. L., Wang, M., & Chen, J. (2013). A pilot study: Application of hemoglobin and cortisol levels, and a memory test to evaluate the quality of life of breast cancer patients on chemotherapy. International Journal of Biological Markers, 28(4), E348–E356.PubMedGoogle Scholar
  30. Mayeux, R. (2010). Early Alzheimer’s disease. New England Journal of Medicine, 362, 2194–2201.PubMedGoogle Scholar
  31. Miao, H., Chen, X., Yan, Y., He, X., Hu, S., Kong, J., et al. (2016). Functional connectivity change of brain default mode network in breast cancer patients after chemotherapy. Neuroradiology, 58(9), 1–8.Google Scholar
  32. Moser, M. B., & Moser, E. I. (2015). Functional differentiation in the hippocampus. Hippocampus, 8(6), 608–619.Google Scholar
  33. Ojemann, G. A., Schoenfield-McNeill, J., & Corina, D. (2009). The roles of human lateral temporal cortical neuronal activity in recent verbal memory encoding. Cerebral Cortex, 19(1), 197–205.PubMedGoogle Scholar
  34. Pawluski, J. L., & Galea, L. A. M. (2007). Reproductive experience alters hippocampal neurogenesis during the postpartum period in the dam. Neuroscience, 149(1), 53–67.PubMedGoogle Scholar
  35. Piccirillo, J. F., Hardin, F. M., Nicklaus, J., Kallogjeri, D., Wilson, M., Ma, C. X., Coalson, R. S., Shimony, J., & Schlaggar, B. L. (2015). Cognitive impairment after chemotherapy related to atypical network architecture for executive control. Oncology, 88, 360–368. Scholar
  36. Poppenk, M., & Morris. (2011). A hippocampal marker of recollection memory ability among healthy young adults: Contributions of posterior and anterior segments. Neuron, 72(6), 931–937.PubMedGoogle Scholar
  37. Puthiyedth, N., Riveros, C., Berretta, R., et al. (2016). Identification of differentially expressed genes through integrated study of Alzheimer’s disease affected brain regions. PLoS One, 11, 1–29.Google Scholar
  38. Qin, S., Duan, X., Supekar, K., Chen, H., Chen, T., & Menon, V. (2016). Large-scale intrinsic functional network organization along the long-axis of the human medial temporal lobe. Brain Structure & Function, 221(6), 3237–3258.Google Scholar
  39. Reinecke, A., Kai, T., Filippini, N., Croft, A., & Harmer, C. J. (2014). Predicting rapid response to cognitive-behavioural treatment for panic disorder: The role of hippocampus, insula, and dorsolateral prefrontal cortex. Behaviour Research and Therapy, 62, 120–128.PubMedGoogle Scholar
  40. Seigers, R., Schagen, S. B., Beerling, W., Boogerd, W., Van, T. O., van Dam, F. S., et al. (2008). Long-lasting suppression of hippocampal cell proliferation and impaired cognitive performance by methotrexate in the rat. Behavioural Brain Research, 186(2), 168–175.PubMedGoogle Scholar
  41. Seigers, R., Schagen, S. B., Coppens, C. M., Most, P. J. V. D., Dam, F. S. A. M. V., Koolhaas, J. M., et al. (2009). Methotrexate decreases hippocampal cell proliferation and induces memory deficits in rats. Behavioural Brain Research, 201(2), 279–284.PubMedGoogle Scholar
  42. Smith, A. S., Avram, S. K. W., Cymerblitsabba, A., Song, J., & Young, W. S. (2016). Targeted activation of the hippocampal ca2 area strongly enhances social memory. Molecular Psychiatry, 21(8), 1137–1144.PubMedPubMedCentralGoogle Scholar
  43. Sparks, D. L., Martins, R., & Martin, T. (2010). Cholesterol and cognition: rationale for the ad cholesterol-lowering treatment trial and sex-related differences in beta-amyloid accumulation in the brains of spontaneously hypercholesterolemic watanabe rabbits. Annals of the New York Academy of Sciences, 977(1), 356–366.Google Scholar
  44. Tanapat, P., Hastings, N. B., Reeves, A. J., & Gould, E. (1999). Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat. Journal of Neuroscience, 19(14), 5792–5801.PubMedGoogle Scholar
  45. Toffoletto, S., Lanzenberger, R., Gingnell, M., Sundström-Poromaa, I., & Comasco, E. (2014). Emotional and cognitive functional imaging of estrogen and progesterone effects in the female human brain: A systematic review. Psychoneuroendocrinology, 50, 28–52.PubMedGoogle Scholar
  46. Torino, F., Barnabei, A., Vecchis, L. D., Sini, V., Schittulli, F., Marchetti, P., et al. (2014). Chemotherapy-induced ovarian toxicity in patients affected by endocrine-responsive early breast cancer. Critical Reviews in Oncology, 89(1), 27–42.Google Scholar
  47. Valentini, A., Finch, A., Lubinski, J., Byrski, T., Ghadirian, P., Kimsing, C., et al. (2013). Chemotherapy-induced amenorrhea in patients with breast cancer with a brca1 or brca2 mutation. Journal of Clinical Oncology, 31(31), 3914–3919.PubMedPubMedCentralGoogle Scholar
  48. Vearncombe, K. J., Margaret, R., Margaret, W., Pachana, N. A., Brooke, A., & Geoffrey, B. (2009). Predictors of cognitive decline after chemotherapy in breast cancer patients. Journal of the International Neuropsychological Society, 15(6), 12.Google Scholar
  49. Wefel, J. S., & Schagen, S. B. (2012). Chemotherapy-related cognitive dysfunction. Current Neurology and Neuroscience Reports, 12(3), 267–275.PubMedGoogle Scholar
  50. Wefel, J. S., Kesler, S. R., Noll, K. R., & Schagen, S. B. (2015). Clinical characteristics, pathophysiology, and management of noncentral nervous system cancer-related cognitive impairment in adults. CA: A Cancer Journal for Clinicians, 65(2), 123–138.Google Scholar
  51. Yang, M., Kim, J., Kim, J. S., Kim, S. H., Kim, J. C., Kang, M. J., Jung, U., Shin, T., Wang, H., & Moon, C. (2014). Hippocampal dysfunctions in tumor-bearing mice. Brain, Behavior, and Immunity, 36(1), 147–155.PubMedGoogle Scholar
  52. Yin, Z. X., Shi, X. M., Kraus, V. B., Fitzgerald, S. M., Qian, H., Xu, J., Zhai, Y., Sereny, M. D., & Zeng, Y. (2012). High normal plasma triglycerides are associated with preserved cognitive function in Chinese oldest-old. Age and Ageing, 41(5), 600–606.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yun Feng
    • 1
    • 2
  • Dilihumaer Tuluhong
    • 3
  • Zhao Shi
    • 4
  • Li Juan Zheng
    • 4
  • Tao Chen
    • 3
  • Guang Ming Lu
    • 4
  • Shaohua Wang
    • 3
    Email author
  • Long Jiang Zhang
    • 1
    • 4
    Email author
  1. 1.Department of Medical ImagingJinling Hospital,Nanjing Medical UniversityNanjingChina
  2. 2.Department of Medical Imaging, Medical Imaging CenterThe Affiliated Huaian No.1 People’s Hospital of Nanjing Medical UniversityHuai’ anChina
  3. 3.Department of General Surgery, Jinling HospitalMedical School of Nanjing UniversityNanjingPeople’s Republic of China
  4. 4.Department of Medical Imaging, Jinling HospitalMedical School of Nanjing UniversityNanjingChina

Personalised recommendations