Amygdala network in response to facial expression following neurofeedback training of emotion

  • Yutong Wang
  • Li Yao
  • Xiaojie ZhaoEmail author


Real-time functional magnetic resonance imaging (rtfMRI) has been applied to self-regulate activity in the amygdala and improve emotional perception and recognition as a novel neurofeedback training method. Previous studies have indicated that successful regulation of the target region led to changes in other brain regions as a network during neurofeedback training. However, it is unclear how neurofeedback training of the amygdala affects the network engaged in facial expression. In this study, we investigated the changes in the amygdala network involved in a facial expression task after rtfMRI training of the left amygdala. The amygdala network of pre- and post-training tasks with pleasant expression as the stimulus was extracted using group independent component analysis. The results showed that not only the activity of the amygdala network but also the functional connectivity of the fusiform with the amygdala within the network was enhanced by training. Moreover, increases in this connectivity were correlated with increases in behavioral performance. These findings suggest the functional significance of the connectivity of the fusiform with the amygdala engaged in facial emotional perception as well as their close correlation with behavior, thus providing new insights into the mechanisms of neurofeedback-based emotional regulation and clinical treatment of related emotional disorders.


Amygdala network Neurofeedback Facial expression Independent component analysis Emotional regulation 



This study was funded by the Funds for National Natural Science Foundation of China (grant number 61473044, 61871040) and the Key Program of National Natural Science Foundation of China (grant number 61731003, 61431002).

Compliance with ethical standards

Conflict of interest

All authors declare that he/she has no conflict of interest.

Ethical approval

All procedures performed in studies involving human subjects were in accordance with the ethical standards of the Institutional Review Board of the State Key Laboratory of Cognitive Neuroscience and Learning at Beijing Normal University and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual subjects included in the study.


  1. Adolphs, R., Tranel, D., Hamann, S., Young, A. W., Calder, A. J., Phelps, E. A., Anderson, A., Lee, G. P., & Damasio, A. R. (1999). Recognition of facial emotion in nine individuals with bilateral amygdala damage. Neuropsychologia, 37(10), 1111–1117.CrossRefGoogle Scholar
  2. Caria, A., Sitaram, R., Veit, R., Begliomini, C., & Birbaumer, N. (2010). Volitional control of anterior insula activity modulates the response to aversive stimuli. A real-time functional magnetic resonance imaging study. Biological Psychiatry, 68(5), 425–432.CrossRefGoogle Scholar
  3. Cohen, M. X., Heller, A. S., & Ranganath, C. (2005). Functional connectivity with anterior cingulate and orbitofrontal cortices during decision-making. Cognitive Brain Research, 23(1), 61–70.CrossRefGoogle Scholar
  4. Damasio, A. (2003). Feelings of emotion and the self. Annals of the New York Academy of Sciences, 1001(1), 253–261.CrossRefGoogle Scholar
  5. Damasio, A. R., Grabowski, T. J., Bechara, A., Damasio, H., Ponto, L. L. B., Parvizi, J., & Hichwa, R. D. (2000). Subcortical andcortical brain activity during the feeling of self-generated emotions. Nature Neuroscience, 3, 1049–1056.CrossRefGoogle Scholar
  6. Davey, C. G., Allen, N. B., Harrison, B. J., & Yücel, M. (2011). Increased amygdala response to positive social feedback in young people with major depressive disorder. Biological Psychiatry, 69(8), 734–741.CrossRefGoogle Scholar
  7. Fairhall, S. L., & Ishai, A. (2007). Effective connectivity within the distributed cortical network for face perception. Cerebral Cortex, 17(10), 2400–2406.CrossRefGoogle Scholar
  8. Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends in Cognitive Sciences, 4(6), 223–233.CrossRefGoogle Scholar
  9. Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2002). Human neural systems for face recognition and social communication. Biological Psychiatry, 51(1), 59–67.CrossRefGoogle Scholar
  10. Hui, M., Zhang, H., Ge, R., Yao, L., & Long, Z. (2014). Modulation of functional network with real-time fMRI feedback training of right premotor cortex activity. Neuropsychologia, 62(1), 111–123.CrossRefGoogle Scholar
  11. Jenkins, L. M., Stange, J. P., Barba, A., DelDonno, S. R., Kling, L. R., Briceño, E. M., Weisenbach, S. L., Phan, K. L., Shankman, S. A., Welsh, R. C., & Langenecker, S. A. (2017). Integrated cross-network connectivity of amygdala, insula, and subgenual cingulate associated with facial emotion perception in healthy controls and remitted major depressive disorder. Cognitive, Affective, & Behavioral Neuroscience, 17(6), 1242–1254.CrossRefGoogle Scholar
  12. Jeong, J. W., Diwadkar, V. A., Chugani, C. D., Singsoongsud, P., Muzik, O., Behen, M. E., et al. (2011). Congruence of happy and sad emotion in music and faces modifies cortical audiovisual activation. NeuroImage, 54(4), 2973–2982.CrossRefGoogle Scholar
  13. Johnston, S., Linden, D. E., Healy, D., Goebel, R., Habes, I., & Boehm, S. G. (2011). Upregulation of emotion areas through neurofeedback with a focus on positive mood. Cognitive, Affective, & Behavioral Neuroscience, 11(1), 44–51.CrossRefGoogle Scholar
  14. Kann, S. J., O’Rawe, J. F., Huang, A. S., Klein, D. N., & Leung, H. C. (2017). Preschool negative emotionality predicts activity and connectivity of the fusiform face area and amygdala in later childhood. Social Cognitive & Affective Neuroscience, 12(9), 1511–1519.CrossRefGoogle Scholar
  15. Kawasaki, H., Tsuchiya, N., Kovach, C. K., Nourski, K. V., Oya, H., Howard, M. A., & Adolphs, R. (2012). Processing of facial emotion in the human fusiform gyrus. Journal of Cognitive Neuroscience, 24(6), 1358–1370.CrossRefGoogle Scholar
  16. Kleinhans, N., Richards, T., Sterling, L., Stegbauer, K. C., Mahurin, R., Johnson, L. C., et al. (2008). Abnormal functional connectivity in autism spectrum disorders during face processing. Brain, 131(4), 1000–1012.CrossRefGoogle Scholar
  17. Lawrence, E. J., Li, S., Barker, G. J., Medford, N., Dalton, J., Williams, S. C., et al. (2014). Self-regulation of the anterior insula: Reinforcement learning using real-time fMRI neurofeedback. NeuroImage, 88(3), 113–124.CrossRefGoogle Scholar
  18. Li, Z., Tong, L., Wang, L., Li, Y., He, W., Guan, M., & Yan, B. (2016). Self-regulating positive emotion networks by feedback of multiple emotional brain states using real-time fMRI. Experimental Brain Research, 234(12), 3575–3586.CrossRefGoogle Scholar
  19. Liu, N., Yu, X., Yao, L., & Zhao, X. (2018). Mapping the cortical network arising from up-regulated amygdaloidal activation using λ-Louvain algorithm. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 6(26), 1169–1177.CrossRefGoogle Scholar
  20. Mak, A. K. Y., Hu, Z. G., Zhang, J. X., Xiao, Z. W., & Lee, T. M. C. (2009). Neural correlates of regulation of positive and negative emotions: An fMRI study. Neuroscience Letters, 457(2), 101–106.CrossRefGoogle Scholar
  21. Mazzola, V., Arciero, G., Fazio, L., Lanciano, T., Gelao, B., Popolizio, T., et al. (2016). What impact does an angry context have upon us? The effect of anger on functional connectivity of the right insula and superior temporal gyri. Frontiers in Behavioral Neuroscience, 10, 109.CrossRefGoogle Scholar
  22. Paret, C., Ruf, M., Gerchen, M. F., Kluetsch, R., Demirakca, T., Jungkunz, M., Bertsch, K., Schmahl, C., & Ende, G. (2016). fMRI neurofeedback of amygdala response to aversive stimuli enhances prefrontal-limbic brain connectivity. NeuroImage, 125(3), 182–188.CrossRefGoogle Scholar
  23. Phan, K. L., Wager, T., Taylor, S. F., & Liberzon, I. (2002). Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. NeuroImage, 16(2), 331–348.CrossRefGoogle Scholar
  24. Ratliff, M. S., Patterson, E. (2008). Emotion recognition using facial expressions with active appearancemodels. Proceedings of the Third IASTED International Conference on Human ComputerInteraction, ACTA Press, Anaheim, CA, USA. 138–143.Google Scholar
  25. Ruiz, S., Lee, S., Soekadar, S. R., Caria, A., Veit, R., Kircher, T., et al. (2012). Acquired self-control of insula cortex modulates emotion recognition and brain network connectivity in schizophrenia. Human Brain Mapping, 34(1), 200–212.CrossRefGoogle Scholar
  26. Santos, V., Paes, F., Pereira, V., Arias-Carrión, O., Silva, A. C., Carta, M. G., Nardi, A. E., & Machado, S. (2013). The role of positive emotion and contributions of positive psychology in depression treatment: Systematic review. Clinical Practice & Epidemiology in Mental Health, 9(1), 221–237.CrossRefGoogle Scholar
  27. Tarnowski, P., Kołodziej, M., Majkowski, A., & Rak, R. J. (2017). Emotion recognition using facial expressions. Procedia Computer Science, 108, 1175–1184.CrossRefGoogle Scholar
  28. Thome, J., Densmore, M., Frewen, P. A., McKinnon, M. C., Théberge, J., Nicholson, A. A., Koenig, J., Thayer, J. F., & Lanius, R. A. (2017). Desynchronization of autonomic response and central autonomic network connectivity in posttraumatic stress disorder. Human Brain Mapping, 38(1), 27–40.CrossRefGoogle Scholar
  29. Tottenham, N., Gillespie, K. (2010). The development of amygdala-fusiform structural connectivity and face processing in high functioning autism. International Meeting for Autism Research.Google Scholar
  30. Vuilleumier, P., & Pourtois, G. (2007). Distributed and interactive brain mechanisms during emotion face perception: Evidence from functional neuroimaging. Neuropsychologia, 45(1), 174–194.CrossRefGoogle Scholar
  31. Wang, J., Wei, Q., Bai, T., Zhou, X., Sun, H., Becker, B., Tian, Y., Wang, K., & Kendrick, K. (2017). Electroconvulsive therapy selectively enhanced feedforward connectivity from fusiform face area to amygdala in major depressive disorder. SocCogn Affect Neurosci, 12(12), 1983–1992.CrossRefGoogle Scholar
  32. Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54(6), 1063–1070.CrossRefGoogle Scholar
  33. Young, K. D., Misaki, M., Harmer, C. J., Victor, T., Zotev, V., Phillips, R., Siegle, G. J., Drevets, W. C., & Bodurka, J. (2017). Real-time functional magnetic resonance imaging amygdala neurofeedback changes positive information processing in major depressive disorder. Biological Psychiatry, 82, 578–586.CrossRefGoogle Scholar
  34. Young, K. D., Siegle, G. J., Misaki, M., Zotev, V., Phillips, R., Drevets, W. C., & Bodurka, J. (2018). Altered task-based and resting-state amygdala functional connectivity following real-time fMRI amygdala neurofeedback training in major depressive disorder. Neuroimage Clinical, 17, 691–703.CrossRefGoogle Scholar
  35. Yuan, H., Young, K. D., Phillips, R., Zotev, V., Misaki, M., & Bodurka, J. (2014). Resting-state functional connectivity modulation and sustained changes after real-time functional magnetic resonance imaging neurofeedback training in depression. Brain Connectivity, 4(9), 690–701.CrossRefGoogle Scholar
  36. Zhang, G., Yao, L., Shen, J., Yang, Y., & Zhao, X. (2015). Reorganization of functional brain networks mediates the improvement of cognitive performance following real-time neurofeedback training of working memory. Human Brain Mapping, 36(5), 1705–1715.CrossRefGoogle Scholar
  37. Zhang, W., Wang, J., Fan, L., Zhang, Y., Fox, P. T., Eickhoff, S. B., Yu, C., & Jiang, T. (2016). Functional organization of the fusiform gyrus revealed with connectivity profiles. Human Brain Mapping, 37(8), 3003–3016.CrossRefGoogle Scholar
  38. Zotev, V., Krueger, F., Phillips, R., Alvarez, R. P., Simmons, W. K., Bellgowan, P., Drevets, W. C., & Bodurka, J. (2011). Self-regulation of amygdala activation using real-time fMRI neurofeedback. PLoS One, 6(9), e24522.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Information Science and TechnologyBeijing Normal UniversityBeijingChina
  2. 2.State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina

Personalised recommendations