Advertisement

Assessing drug cue-induced brain response in heroin dependents treated by methadone maintenance and protracted abstinence measures

  • Xuan Wei
  • Wei Li
  • Jiajie Chen
  • Yongbin Li
  • Jia Zhu
  • Hong Shi
  • Jierong Liu
  • Jiuhua Xue
  • Wei Liu
  • Fan Wang
  • Yan Liu
  • Shan Dang
  • Jing Chen
  • Qiang LiEmail author
  • Wei WangEmail author
ORIGINAL RESEARCH
  • 62 Downloads

Abstract

Methadone maintenance treatment (MMT) and protracted abstinence (PA) are common methods of therapy in heroin addiction as both suppress the craving for drug use. However, the difference in patterns of brain function between two groups is unknown. Functional magnetic resonance imaging (fMRI) based drug cue-reactivity task is a good tool to understand the change of brain function during a certain period of treatment. Twenty-three heroin-dependent patients during PA, 18 heroin-dependent patients during MMT and 20 healthy control (HC) individuals were included to conduct the heroin cue-reactivity task during fMRI. The MMT and PA patients’ subjective craving for heroin was evaluated. Differences among the three groups were analyzed with respect to heroin cue induced brain responses. Compared with HC group, MMT and PA groups commonly demonstrated significantly higher brain responses during exposure of heroin-related cues in the bilateral caudate, right thalamus, left hippocampus, parahippocampus, midbrain, left superior parietal lobule, right middle occipital gyrus, left posterior cingulate cortex and right cerebellum. However, compared with PA group, MMT group demonstrated significantly greater brain response mainly in right caudate, hippocampus, midbrain left fusiform, right inferior parietal lobule, left posterior cingulate cortex, cerebellum and postcentral gyrus. No difference in cue induced craving between MMT and PA groups was found. The findings suggest that MMT group demonstrated more enhanced drug cue induced brain responses than PA group, indicating that, these two treatments have different effect on patterns of brain response to heroin related cues in heroin-dependent individuals.

Keywords

Heroin dependence Protracted abstinence Methadone maintenance treatment Craving Functional magnetic resonance imaging 

Notes

Acknowledgments

We thank Mr. Xinhai Wu for contributions to the recruitment of heroin-dependent subjects.

Funding

This study was funded by National Natural Science Foundation of China (81671661 and 81771813), Technology Innovation Development Foundation of Tangdu Hospital (2013LCYJ003), Reserve Talents Foundation of Tangdu Hospital (2016) and Science and Technology Development Fund of the fourth military medical university (2017XD062). The funding sponsors had no role in the design and conduct of the study; data collection, analysis, and interpretation of the data; preparation, and approval of the manuscript; and decision to submit the manuscript for publication.

Compliance with ethical standards

Conflict of interest

All of the authors state that they have no conflicts of interest to declare.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

11682_2019_51_MOESM1_ESM.docx (815 kb)
ESM 1 (DOCX 815 kb)

References

  1. Adolphs, R., Damasio, H., Tranel, D., Cooper, G., & Damasio, A. R. (2000). A role for somatosensory cortices in the visual recognition of emotion as revealed by three-dimensional lesion mapping. The Journal of Neuroscience, 20(7), 2683–2690.CrossRefGoogle Scholar
  2. Axmacher, N., Elger, C. E., & Fell, J. (2009). Working memory-related hippocampal deactivation interferes with long-term memory formation. The Journal of Neuroscience, 29(4), 1052–1960.  https://doi.org/10.1523/JNEUROSCI.5277-08.2009.CrossRefGoogle Scholar
  3. Baler, R. D., & Volkow, N. D. (2006). Drug addiction: the neurobiology of disrupted self-control. Trends in Molecular Medicine, 12(12), 559–566.  https://doi.org/10.1016/j.molmed.2006.10.005.CrossRefGoogle Scholar
  4. Bokde, A. L., Lopez-Bayo, P., Meindl, T., Pechler, S., Born, C., Faltraco, F., et al. (2006). Functional connectivity of the fusiform gyrus during a face-matching task in subjects with mild cognitive impairment. Brain, 129(Pt 5), 1113–1124.  https://doi.org/10.1093/brain/awl051.CrossRefGoogle Scholar
  5. Bratberg, J. P. (2017). Opioids, naloxone, and beyond: the intersection of medication safety, public health, and pharmacy. Journal of the Americcan Pharmaceutical Association (2003), 57(2S), S5–S7.  https://doi.org/10.1016/j.japh.2017.02.006. CrossRefGoogle Scholar
  6. Buckner, R. L., Raichle, M. E., Miezin, F. M., & Petersen, S. E. (1996). Functional anatomic studies of memory retrieval for auditory words and visual pictures. [Comparative Study Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. The Journal of Neuroscience, 16(19), 6219–6235.CrossRefGoogle Scholar
  7. Carbo-Gas, M., Vazquez-Sanroman, D., Aguirre-Manzo, L., Coria-Avila, G. A., Manzo, J., Sanchis-Segura, C., & Miquel, M. (2014). Involving the cerebellum in cocaine-induced memory: pattern of cFos expression in mice trained to acquire conditioned preference for cocaine. Addiction Biology, 19(1), 61–76.  https://doi.org/10.1111/adb.12042.CrossRefGoogle Scholar
  8. Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29(3), 162–173.CrossRefGoogle Scholar
  9. Dackis, C. A., & O'Brien, C. P. (2001). Cocaine dependence: a disease of the brain's reward centers. Journal of Substance Abuse Treatment, 21(3), 111–117.CrossRefGoogle Scholar
  10. Daglish, M. R., Weinstein, A., Malizia, A. L., Wilson, S., Melichar, J. K., Britten, S., et al. (2001). Changes in regional cerebral blood flow elicited by craving memories in abstinent opiate-dependent subjects. The American Journal of Psychiatry, 158(10), 1680–1686.CrossRefGoogle Scholar
  11. Fernando, A., & Wagner, J. C. A. (2002). Into the world of illegal drug use: exposure opportunity and other mechanisms linking the use of alcohol, tobacco, marijuana, and cocaine. American Journal of Epidemiology, 166, 918–925.Google Scholar
  12. Franklin, T. R., Wang, Z., Wang, J., Sciortino, N., Harper, D., Li, Y., et al. (2007). Limbic activation to cigarette smoking cues independent of nicotine withdrawal: a perfusion fMRI study. Neuropsychopharmacology, 32(11), 2301–2309.  https://doi.org/10.1038/sj.npp.1301371.CrossRefGoogle Scholar
  13. Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253–258.  https://doi.org/10.1073/pnas.0135058100.CrossRefGoogle Scholar
  14. Haber, S. N., & Knutson, B. (2010). The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1), 4–26.  https://doi.org/10.1038/npp.2009.129.CrossRefGoogle Scholar
  15. Hser, Y.-I., Douglas, A. M., & Fletcher, B. (1998). Comparative treatment effectiveness effects of program modality and client drug dependence history on drug use reduction. Journal of Substance Abuse Treatment, 15(6), 513–523.CrossRefGoogle Scholar
  16. Kreek, M. J. (2000). Methadone-related opioid agonist pharmacotherapy for heroin addiction. History, recent molecular and neurochemical research and future in mainstream medicine. Annals of the New York Academy of Sciences, 909, 186–216.CrossRefGoogle Scholar
  17. Langleben, D. D., Ruparel, K., Elman, I., Busch-Winokur, S., Pratiwadi, R., Loughead, J., et al. (2008). Acute effect of methadone maintenance dose on brain FMRI response to heroin-related cues. Am J Psychiatry, 165(3), 390–394.  https://doi.org/10.1176/appi.ajp.2007.07010070.CrossRefGoogle Scholar
  18. Li, Q., Wang, Y., Zhang, Y., Li, W., Yang, W., Zhu, J., Wu, N., Chang, H., Zheng, Y., Qin, W., Zhao, L., Yuan, K., Liu, J., Wang, W., & Tian, J. (2012). Craving correlates with mesolimbic responses to heroin-related cues in short-term abstinence from heroin: an event-related fMRI study. Brain Research, 1469, 63–72.  https://doi.org/10.1016/j.brainres.2012.06.024.CrossRefGoogle Scholar
  19. Li, Q., Wang, Y., Zhang, Y., Li, W., Zhu, J., Zheng, Y., Chen, J., Zhao, L., Zhou, Z., Liu, Y., Wang, W., & Tian, J. (2013). Assessing cue-induced brain response as a function of abstinence duration in heroin-dependent individuals: an event-related fMRI study. PLoS One, 8(5), e62911.  https://doi.org/10.1371/journal.pone.0062911.CrossRefGoogle Scholar
  20. Li, Q., Li, W., Wang, H., Wang, Y., Zhang, Y., Zhu, J., Zheng, Y., Zhang, D., Wang, L., Li, Y., Yan, X., Chang, H., Fan, M., Li, Z., Tian, J., Gold, M. S., Wang, W., & Liu, Y. (2015). Predicting subsequent relapse by drug-related cue-induced brain activation in heroin addiction: an event-related functional magnetic resonance imaging study. Addiction Biology, 20(5), 968–978.  https://doi.org/10.1111/adb.12182.CrossRefGoogle Scholar
  21. Li, W., Li, Q., Wang, Y., Zhu, J., Ye, J., Yan, X., Li, Y., Chen, J., Liu, J., Li, Z., Wang, W., & Liu, Y. (2016). Methadone-induced damage to white matter integrity in methadone maintenance patients: a longitudinal self-control DTI study. Scientific Reports, 6, 19662.  https://doi.org/10.1038/srep19662.CrossRefGoogle Scholar
  22. O'Brien, C. P. (1997). A range of research-based pharmacotherapies for addiction. Science, 278(5335), 66–70.CrossRefGoogle Scholar
  23. Panzeri, S., Magri, C., & Logothetis, N. K. (2008). On the use of information theory for the analysis of the relationship between neural and imaging signals. Magnetic Resonance Imaging, 26(7), 1015–1025.  https://doi.org/10.1016/j.mri.2008.02.019.CrossRefGoogle Scholar
  24. Poldrack, R. A., Monahan, J., Imrey, P. B., Reyna, V., Raichle, M. E., Faigman, D., & Buckholtz, J. W. (2018). Predicting violent behavior: what can neuroscience add? Trends in Cognitive Sciences, 22(2), 111–123.  https://doi.org/10.1016/j.tics.2017.11.003.CrossRefGoogle Scholar
  25. Prendergas, M. L., Podus, D., & Chang, E. (2000). Program factors and treatment outcomes in drug dependence treatment: an examination using meta-analysis. Substance Use & Misuse, 35(12–14), 1931–1965.CrossRefGoogle Scholar
  26. Rudrauf, D., Lachaux, J. P., Damasio, A., Baillet, S., Hugueville, L., Martinerie, J., Damasio, H., & Renault, B. (2009). Enter feelings: somatosensory responses following early stages of visual induction of emotion. International Journal of Psychophysiology, 72(1), 13–23.  https://doi.org/10.1016/j.ijpsycho.2008.03.015.CrossRefGoogle Scholar
  27. Sell, L. A., Morris, J. S., Bearn, J., Frackowiak, R. S., Friston, K. J., & Dolan, R. J. (2000). Neural responses associated with cue evoked emotional states and heroin in opiate addicts. Drug and Alcohol Dependence, 60(2), 207–216.CrossRefGoogle Scholar
  28. Shine, J. M., & Poldrack, R. A. (2018). Principles of dynamic network reconfiguration across diverse brain states. Neuroimage, 180(Pt B), 396–405.  https://doi.org/10.1016/j.neuroimage.2017.08.010.CrossRefGoogle Scholar
  29. Song, X. W., Dong, Z. Y., Long, X. Y., Li, S. F., Zuo, X. N., Zhu, C. Z., He, Y., Yan, C. G., & Zang, Y. F. (2011). REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One, 6(9), e25031.  https://doi.org/10.1371/journal.pone.0025031.CrossRefGoogle Scholar
  30. Spanagel, R. (2003). Alcohol addiction research: from animal models to clinics. Best Practice & Research. Clinical Gastroenterology, 17(4), 507–518.CrossRefGoogle Scholar
  31. Tabatabaei-Jafari, H., Ekhtiari, H., Ganjgahi, H., Hassani-Abharian, P., Oghabian, M. A., Moradi, A., Sadighi, N., & Zarei, M. (2014). Patterns of brain activation during craving in heroin dependents successfully treated by methadone maintenance and abstinence-based treatments. Journal of Addiction Medicine, 8(2), 123–129.  https://doi.org/10.1097/ADM.0000000000000022.CrossRefGoogle Scholar
  32. Tang, Y. L., Zhao, D., Zhao, C., & Cubells, J. F. (2006). Opiate addiction in China: current situation and treatments. Addiction, 101(5), 657–665.  https://doi.org/10.1111/j.1360-0443.2006.01367.x.CrossRefGoogle Scholar
  33. Tiffany, S. T., & Carter, B. L. (1998). Is craving the source of compulsive drug use? Journal of Psychopharmacology, 12(1), 23–30.  https://doi.org/10.1177/026988119801200104.CrossRefGoogle Scholar
  34. Volkow, N. D., & Boyle, M. (2018). Neuroscience of addiction: relevance to prevention and treatment. The American Journal of Psychiatry, 175(8), 729–740.  https://doi.org/10.1176/appi.ajp.2018.17101174.CrossRefGoogle Scholar
  35. Volkow, N. D., Wang, G. J., Telang, F., Fowler, J. S., Logan, J., Childress, A. R., Jayne, M., Ma, Y., & Wong, C. (2006). Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. The Journal of Neuroscience, 26(24), 6583–6588.  https://doi.org/10.1523/JNEUROSCI.1544-06.2006.CrossRefGoogle Scholar
  36. Walter, M., Denier, N., Gerber, H., Schmid, O., Lanz, C., Brenneisen, R., Riecher-Rössler, A., Wiesbeck, G. A., Scheffler, K., Seifritz, E., McGuire, P., Fusar-Poli, P., & Borgwardt, S. (2015). Orbitofrontal response to drug-related stimuli after heroin administration. Addiction Biology, 20(3), 570–579.  https://doi.org/10.1111/adb.12145.CrossRefGoogle Scholar
  37. Wang, Y., Li, W., Li, Q., Yang, W., Zhu, J., & Wang, W. (2011a). White matter impairment in heroin addicts undergoing methadone maintenance treatment and prolonged abstinence: a preliminary DTI study. [research support, non-U.S. Gov't]. Neuroscience Letters, 494(1), 49–53.  https://doi.org/10.1016/j.neulet.2011.02.053. CrossRefGoogle Scholar
  38. Wang, W., Li, Q., Wang, Y., Tian, J., Yang, W., Li, W., Qin, W., Yuan, K., & Liu, J. (2011b). Brain fMRI and craving response to heroin-related cues in patients on methadone maintenance treatment. The American Journal of Drug and Alcohol Abuse, 37(2), 123–130.  https://doi.org/10.3109/00952990.2010.543997.CrossRefGoogle Scholar
  39. Wang, Y., Wang, H., Li, W., Zhu, J., Gold, M. S., Zhang, D., Wang, L., Li, Y., Yan, X., Cheng, J., Li, Q., & Wang, W. (2014). Reduced responses to heroin-cue-induced craving in the dorsal striatum: effects of long-term methadone maintenance treatment. Neuroscience Letters, 581, 120–124.  https://doi.org/10.1016/j.neulet.2014.08.026.CrossRefGoogle Scholar
  40. Wei, X., Wang, L., Wang, X., Li, J., Li, H., & Jia, W. (2013). A study of 6-year retention in methadone maintenance treatment among opioid-dependent patients in Xi'an. Journal of Addiction Medicine, 7(5), 342–348.  https://doi.org/10.1097/ADM.0b013e31829da05b.CrossRefGoogle Scholar
  41. Xiao, Z., Lee, T., Zhang, J. X., Wu, Q., Wu, R., Weng, X., & Hu, X. (2006). Thirsty heroin addicts show different fMRI activations when exposed to water-related and drug-related cues. Drug and Alcohol Dependence, 83(2), 157–162.  https://doi.org/10.1016/j.drugalcdep.2005.11.012.CrossRefGoogle Scholar
  42. Yacubian, J., Sommer, T., Schroeder, K., Glascher, J., Kalisch, R., Leuenberger, B., Braus, D. F., & Buchel, C. (2007). Gene-gene interaction associated with neural reward sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 104(19), 8125–8130.  https://doi.org/10.1073/pnas.0702029104. CrossRefGoogle Scholar
  43. Yang, Z., Xie, J., Shao, Y. C., Xie, C. M., Fu, L. P., Li, D. J., Fan, M., Ma, L., & Li, S. J. (2009). Dynamic neural responses to cue-reactivity paradigms in heroin-dependent users: an fMRI study. Human Brain Mapping, 30(3), 766–775.  https://doi.org/10.1002/hbm.20542.CrossRefGoogle Scholar
  44. Zald, D. H., Boileau, I., El-Dearedy, W., Gunn, R., McGlone, F., Dichter, G. S., et al. (2004). Dopamine transmission in the human striatum during monetary reward tasks. The Journal of Neuroscience, 24(17), 4105–4112.  https://doi.org/10.1523/JNEUROSCI.4643-03.2004.CrossRefGoogle Scholar
  45. Zijlstra, F., Veltman, D. J., Booij, J., van den Brink, W., & Franken, I. H. (2009). Neurobiological substrates of cue-elicited craving and anhedonia in recently abstinent opioid-dependent males. Drug and Alcohol Dependence, 99(1–3), 183–192.  https://doi.org/10.1016/j.drugalcdep.2008.07.012.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xuan Wei
    • 1
  • Wei Li
    • 1
  • Jiajie Chen
    • 1
  • Yongbin Li
    • 1
  • Jia Zhu
    • 1
  • Hong Shi
    • 1
  • Jierong Liu
    • 1
  • Jiuhua Xue
    • 1
  • Wei Liu
    • 1
  • Fan Wang
    • 1
  • Yan Liu
    • 1
  • Shan Dang
    • 1
  • Jing Chen
    • 1
  • Qiang Li
    • 1
    Email author
  • Wei Wang
    • 1
    Email author
  1. 1.Department of Radiology, Tangdu HospitalThe Fourth Military Medical UniversityXi’anChina

Personalised recommendations