Advertisement

Aberrant resting-state functional connectivity of salience network in first-episode schizophrenia

  • Huan Huang
  • Zeng Botao
  • Yuchao Jiang
  • Yingying Tang
  • Tianhong Zhang
  • Xiaochen Tang
  • Lihua Xu
  • Junjie Wang
  • Jin Li
  • Zhenying Qian
  • Xu Liu
  • Huiling Wang
  • Cheng Luo
  • Chunbo Li
  • Jian XuEmail author
  • Donald Goff
  • Jijun WangEmail author
ORIGINAL RESEARCH
  • 45 Downloads

Abstract

The disruption of salience network (SN) has been consistently found in patients with schizophrenia and thought to give rise to specific symptoms. However, the functional dysconnectivity pattern of SN remains unclear in first-episode schizophrenia (FES). Sixty-five patients with FES and sixty-six health controls (HC) were enrolled in this study and underwent resting-state functional magnetic resonance imaging (rs-fMRI). The eleven regions of interest (ROIs) within SN were derived from the peaks of the group independent component analysis (gICA). Seed-based whole-brain functional connectivity (FC) analyses were performed with all SN ROIs as the seeds. Both hyper- and hypo-connectivity of SN were found in the FES. Specifically, the increased FC mainly existed between the SN and cortico-cerebellar sub-circuit and prefrontal cortex, while the reduced FC mainly existed within cortico-striatal-thalamic-cortical (CSTC) sub-circuit. Our findings suggest that FES is associated with pronounced dysregulation of SN, characterized prominently by hyperconnectivity of SN-prefrontal cortex and cerebellum, as well as hypoconnectivity of CSTC sub-circuit of the SN.

Keywords

First-episode schizophrenia Resting-state functional magnetic resonance imaging Salience network Functional connectivity 

Notes

Author contributions

DG and JW designed the current study. HH drafted the manuscript. HH, BZ, YT, TZ, LX, JW, JL, ZQ, JX, CL, and JW performed the experiments. HH, BZ, YJ, YT, TZ, LX, HW, CL, JX, and JW analyzed the data. HH, YJ, HW, JX, and JW revised the the manuscript. All of the authors read and approved the final manuscript.

Funding

This work was supported by grants from Ministry of Science and Technology of China (2016YFC1306803), National Natural Science Foundation of China (81671329, 81671332), Program of Shanghai Academic/Technology Research Leader (16XD1402400), Shanghai Science and Technology Committee (16JC1420200, 17ZR1424700), National Key Clinical Disciplines at Shanghai Mental Health Center (OMA-MH, 2011–873), Shanghai Key Laboratory of Psychotic Disorders (13dz2260500), Shanghai Jiao Tong University Foundation (14JCRY04, YG2014MS40), SHSMU- ION Research Center for Brain Disorders (2015NKX001, 15ZH2015, W35XT), Medicine Engineering Intersection Program of Shanghai Jiaotong University (YG2015ZD12) and Shanghai Hospital Development Center (16CR2015A, 16CR3017A). Projects of medical and health development in Shandong province (2017WS115), Projects of medical and health development in Qingdao city (2016WJZD068), Doctoral Innovation Fund from Shanghai Jiaotong University School of Medicine (BXJ201639).

Compliance with ethical standards

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

The Ethics Committee of SMHC approved the study protocol(2012-45C1).

Informed consent

The written, informed consent of all subjects was obtained after receiving a complete description of the study.

Supplementary material

11682_2019_40_MOESM1_ESM.docx (165 kb)
ESM 1 (DOCX 164 kb)

References

  1. Allman, J. M., Tetreault, N. A., Hakeem, A. Y., Manaye, K. F., Semendeferi, K., Erwin, J. M., Park, S., Goubert, V., & Hof, P. R. (2010). The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans. Brain Structure & Function, 214(5–6), 495–517.  https://doi.org/10.1007/s00429-010-0254-0.CrossRefGoogle Scholar
  2. Andreasen, N. C. (1989). The scale for the assessment of negative symptoms (SANS): Conceptual and theoretical foundations. The British Journal of Psychiatry, 155(Suppl 7), 49–58.CrossRefGoogle Scholar
  3. Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage, 37(1), 90–101.  https://doi.org/10.1016/j.neuroimage.2007.04.042.CrossRefGoogle Scholar
  4. Brune, M., Schobel, A., Karau, R., Benali, A., Faustmann, P. M., Juckel, G., et al. (2010). Von Economo neuron density in the anterior cingulate cortex is reduced in early onset schizophrenia. Acta Neuropathologica, 119(6), 771–778.  https://doi.org/10.1007/s00401-010-0673-2.CrossRefGoogle Scholar
  5. Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping, 14(3), 140–151.CrossRefGoogle Scholar
  6. Chen, Y. L., Tu, P. C., Lee, Y. C., Chen, Y. S., Li, C. T., & Su, T. P. (2013). Resting-state fMRI mapping of cerebellar functional dysconnections involving multiple large-scale networks in patients with schizophrenia. Schizophrenia Research, 149(1–3), 26–34.  https://doi.org/10.1016/j.schres.2013.05.029.CrossRefGoogle Scholar
  7. Damoiseaux, J. S., Rombouts, S. A., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., et al. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences of the United States of America, 103(37), 13848–13853.  https://doi.org/10.1073/pnas.0601417103.CrossRefGoogle Scholar
  8. De Smet, H. J., Paquier, P., Verhoeven, J., & Marien, P. (2013). The cerebellum: Its role in language and related cognitive and affective functions. Brain and Language, 127(3), 334–342.  https://doi.org/10.1016/j.bandl.2012.11.001.CrossRefGoogle Scholar
  9. Dong, D., Wang, Y., Chang, X., Luo, C., & Yao, D. (2017). Dysfunction of large-scale brain networks in schizophrenia: A meta-analysis of resting-state functional connectivity. Schizophr Bull.  https://doi.org/10.1093/schbul/sbx034.
  10. Dosenbach, N. U., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K., Dosenbach, R. A., et al. (2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 11073–11078.  https://doi.org/10.1073/pnas.0704320104.CrossRefGoogle Scholar
  11. Dosenbach, N. U., Visscher, K. M., Palmer, E. D., Miezin, F. M., Wenger, K. K., Kang, H. C., et al. (2006). A core system for the implementation of task sets. Neuron, 50(5), 799–812.  https://doi.org/10.1016/j.neuron.2006.04.031.CrossRefGoogle Scholar
  12. Fornito, A., Harrison, B. J., Goodby, E., Dean, A., Ooi, C., Nathan, P. J., Lennox, B. R., Jones, P. B., Suckling, J., & Bullmore, E. T. (2013). Functional dysconnectivity of corticostriatal circuitry as a risk phenotype for psychosis. JAMA Psychiatry, 70(11), 1143–1151.  https://doi.org/10.1001/jamapsychiatry.2013.1976.CrossRefGoogle Scholar
  13. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A, 102(27), 9673–9678.  https://doi.org/10.1073/pnas.0504136102. CrossRefGoogle Scholar
  14. Glahn, D. C., Laird, A. R., Ellison-Wright, I., Thelen, S. M., Robinson, J. L., Lancaster, J. L., Bullmore, E., & Fox, P. T. (2008). Meta-analysis of gray matter anomalies in schizophrenia: Application of anatomic likelihood estimation and network analysis. Biological Psychiatry, 64(9), 774–781.  https://doi.org/10.1016/j.biopsych.2008.03.031.CrossRefGoogle Scholar
  15. Gordon, N. (2007). The cerebellum and cognition. European Journal of Paediatric Neurology, 11(4), 232–234.  https://doi.org/10.1016/j.ejpn.2007.02.003.CrossRefGoogle Scholar
  16. Guo, W., Liu, F., Chen, J., Wu, R., Zhang, Z., Yu, M., Xiao, C., & Zhao, J. (2015a). Resting-state cerebellar-cerebral networks are differently affected in first-episode, drug-naive schizophrenia patients and unaffected siblings. Scientific Reports, 5, 17275.  https://doi.org/10.1038/srep17275.CrossRefGoogle Scholar
  17. Guo, W., Liu, F., Liu, J., Yu, L., Zhang, J., Zhang, Z., Xiao, C., Zhai, J., & Zhao, J. (2015b). Abnormal causal connectivity by structural deficits in first-episode, drug-naive schizophrenia at rest. Schizophrenia Bulletin, 41(1), 57–65.  https://doi.org/10.1093/schbul/sbu126.CrossRefGoogle Scholar
  18. Han, S. W., Eaton, H. P., & Marois, R. (2018). Functional fractionation of the Cingulo-opercular network: Alerting insula and updating cingulate. Cereb Cortex.  https://doi.org/10.1093/cercor/bhy130.
  19. Hovington, C. L., & Lepage, M. (2012). Neurocognition and neuroimaging of persistent negative symptoms of schizophrenia. Expert Review of Neurotherapeutics, 12(1), 53–69.  https://doi.org/10.1586/ern.11.173.CrossRefGoogle Scholar
  20. Ince, E., & Ucok, A. (2018). Relationship between persistent negative symptoms and findings of Neurocognition and neuroimaging in schizophrenia. Clinical EEG and Neuroscience, 49(1), 27–35.  https://doi.org/10.1177/1550059417746213.CrossRefGoogle Scholar
  21. Jiang, Y., Duan, M., Chen, X., Chang, X., He, H., Li, Y., Luo, C., & Yao, D. (2017). Common and distinct dysfunctional patterns contribute to triple network model in schizophrenia and depression: A preliminary study. Prog Neuropsychopharmacol Biol Psychiatry, 79(Pt B), 302–310.  https://doi.org/10.1016/j.pnpbp.2017.07.007.CrossRefGoogle Scholar
  22. Kapur, S. (2003). Psychosis as a state of aberrant salience: A framework linking biology, phenomenology, and pharmacology in schizophrenia. The American Journal of Psychiatry, 160(1), 13–23.  https://doi.org/10.1176/appi.ajp.160.1.13.CrossRefGoogle Scholar
  23. Krause, M., Theiss, C., & Brune, M. (2017). Ultrastructural alterations of Von Economo neurons in the anterior cingulate cortex in schizophrenia. Anat Rec (Hoboken), 300(11), 2017–2024.  https://doi.org/10.1002/ar.23635.CrossRefGoogle Scholar
  24. Leucht, S., Samara, M., Heres, S., Patel, M. X., Furukawa, T., Cipriani, A., Geddes, J., & Davis, J. M. (2015). Dose equivalents for second-generation antipsychotic drugs: The classical mean dose method. Schizophrenia Bulletin, 41(6), 1397–1402.  https://doi.org/10.1093/schbul/sbv037.CrossRefGoogle Scholar
  25. Leucht, S., Samara, M., Heres, S., Patel, M. X., Woods, S. W., & Davis, J. M. (2014). Dose equivalents for second-generation antipsychotics: The minimum effective dose method. Schizophrenia Bulletin, 40(2), 314–326.  https://doi.org/10.1093/schbul/sbu001.CrossRefGoogle Scholar
  26. Liu, H., Fan, G., Xu, K., & Wang, F. (2011). Changes in cerebellar functional connectivity and anatomical connectivity in schizophrenia: A combined resting-state functional MRI and diffusion tensor imaging study. Journal of Magnetic Resonance Imaging, 34(6), 1430–1438.  https://doi.org/10.1002/jmri.22784.CrossRefGoogle Scholar
  27. Manoliu, A., Riedl, V., Zherdin, A., Muhlau, M., Schwerthoffer, D., Scherr, M., et al. (2014). Aberrant dependence of default mode/central executive network interactions on anterior insular salience network activity in schizophrenia. Schizophrenia Bulletin, 40(2), 428–437.  https://doi.org/10.1093/schbul/sbt037.CrossRefGoogle Scholar
  28. Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15(10), 483–506.  https://doi.org/10.1016/j.tics.2011.08.003.CrossRefGoogle Scholar
  29. Menon, V. (2015). Salience network. Brain Mapping: An Encyclopedic Reference, 2, 597–611.  https://doi.org/10.1016/b978-0-12-397025-1.00052-x.
  30. Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure & Function, 214(5–6), 655–667.  https://doi.org/10.1007/s00429-010-0262-0.CrossRefGoogle Scholar
  31. Mikolas, P., Melicher, T., Skoch, A., Matejka, M., Slovakova, A., Bakstein, E., Hajek, T., & Spaniel, F. (2016). Connectivity of the anterior insula differentiates participants with first-episode schizophrenia spectrum disorders from controls: A machine-learning study. Psychological Medicine, 46(13), 2695–2704.  https://doi.org/10.1017/S0033291716000878.CrossRefGoogle Scholar
  32. Moran, L. V., Tagamets, M. A., Sampath, H., O'Donnell, A., Stein, E. A., Kochunov, P., et al. (2013). Disruption of anterior insula modulation of large-scale brain networks in schizophrenia. Biological Psychiatry, 74(6), 467–474.  https://doi.org/10.1016/j.biopsych.2013.02.029.CrossRefGoogle Scholar
  33. Palaniyappan, L., & Liddle, P. F. (2012). Does the salience network play a cardinal role in psychosis? An emerging hypothesis of insular dysfunction. Journal of Psychiatry & Neuroscience, 37(1), 17–27.  https://doi.org/10.1503/jpn.100176.CrossRefGoogle Scholar
  34. Palaniyappan, L., Simmonite, M., White, T. P., Liddle, E. B., & Liddle, P. F. (2013). Neural primacy of the salience processing system in schizophrenia. Neuron, 79(4), 814–828.  https://doi.org/10.1016/j.neuron.2013.06.027.CrossRefGoogle Scholar
  35. Palaniyappan, L., White, T. P., & Liddle, P. F. (2012). The concept of salience network dysfunction in schizophrenia: From neuroimaging observations to therapeutic opportunities. Current Topics in Medicinal Chemistry, 12(21), 2324–2338.CrossRefGoogle Scholar
  36. Paulin, M. G. (1993). The role of the cerebellum in motor control and perception. Brain, Behavior and Evolution, 41(1), 39–50.CrossRefGoogle Scholar
  37. Peterburs, J., & Desmond, J. E. (2016). The role of the human cerebellum in performance monitoring. Current Opinion in Neurobiology, 40, 38–44.  https://doi.org/10.1016/j.conb.2016.06.011.CrossRefGoogle Scholar
  38. Peters, S. K., Dunlop, K., & Downar, J. (2016). Cortico-striatal-thalamic loop circuits of the salience network: A central pathway in psychiatric disease and treatment. Frontiers in Systems Neuroscience, 10, 104.  https://doi.org/10.3389/fnsys.2016.00104.CrossRefGoogle Scholar
  39. Pettersson-Yeo, W., Allen, P., Benetti, S., McGuire, P., & Mechelli, A. (2011). Dysconnectivity in schizophrenia: Where are we now? Neuroscience and Biobehavioral Reviews, 35(5), 1110–1124.  https://doi.org/10.1016/j.neubiorev.2010.11.004.CrossRefGoogle Scholar
  40. Repovs, G., Csernansky, J. G., & Barch, D. M. (2011). Brain network connectivity in individuals with schizophrenia and their siblings. Biological Psychiatry, 69(10), 967–973.  https://doi.org/10.1016/j.biopsych.2010.11.009.CrossRefGoogle Scholar
  41. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27(9), 2349–2356.  https://doi.org/10.1523/JNEUROSCI.5587-06.2007.CrossRefGoogle Scholar
  42. Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12569–12574.  https://doi.org/10.1073/pnas.0800005105.CrossRefGoogle Scholar
  43. Stephan, K. E., Friston, K. J., & Frith, C. D. (2009). Dysconnection in schizophrenia: From abnormal synaptic plasticity to failures of self-monitoring. Schizophrenia Bulletin, 35(3), 509–527.  https://doi.org/10.1093/schbul/sbn176.CrossRefGoogle Scholar
  44. Szczepanski, S. M., & Knight, R. T. (2014). Insights into human behavior from lesions to the prefrontal cortex. Neuron, 83(5), 1002–1018.  https://doi.org/10.1016/j.neuron.2014.08.011.CrossRefGoogle Scholar
  45. Tu, P., Buckner, R. L., Zollei, L., Dyckman, K. A., Goff, D. C., & Manoach, D. S. (2010). Reduced functional connectivity in a right-hemisphere network for volitional ocular motor control in schizophrenia. Brain, 133(Pt 2), 625–637.  https://doi.org/10.1093/brain/awp317.CrossRefGoogle Scholar
  46. Tu, P. C., Hsieh, J. C., Li, C. T., Bai, Y. M., & Su, T. P. (2012). Cortico-striatal disconnection within the cingulo-opercular network in schizophrenia revealed by intrinsic functional connectivity analysis: A resting fMRI study. Neuroimage, 59(1), 238–247.  https://doi.org/10.1016/j.neuroimage.2011.07.086.CrossRefGoogle Scholar
  47. Tu, P. C., Lee, Y. C., Chen, Y. S., Hsu, J. W., Li, C. T., & Su, T. P. (2015). Network-specific cortico-thalamic dysconnection in schizophrenia revealed by intrinsic functional connectivity analyses. Schizophrenia Research, 166(1–3), 137–143.  https://doi.org/10.1016/j.schres.2015.05.023.CrossRefGoogle Scholar
  48. Uddin, L. Q., Supekar, K., Amin, H., Rykhlevskaia, E., Nguyen, D. A., Greicius, M. D., & Menon, V. (2010). Dissociable connectivity within human angular gyrus and intraparietal sulcus: Evidence from functional and structural connectivity. Cerebral Cortex, 20(11), 2636–2646.  https://doi.org/10.1093/cercor/bhq011.CrossRefGoogle Scholar
  49. Uddin, L. Q., Supekar, K. S., Ryali, S., & Menon, V. (2011). Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development. The Journal of Neuroscience, 31(50), 18578–18589.  https://doi.org/10.1523/JNEUROSCI.4465-11.2011.CrossRefGoogle Scholar
  50. Wang, C., Ji, F., Hong, Z., Poh, J. S., Krishnan, R., Lee, J., Rekhi, G., Keefe, R. S. E., Adcock, R. A., Wood, S. J., Fornito, A., Pasternak, O., Chee, M. W. L., & Zhou, J. (2016b). Disrupted salience network functional connectivity and white-matter microstructure in persons at risk for psychosis: Findings from the LYRIKS study. Psychological Medicine, 46(13), 2771–2783.  https://doi.org/10.1017/S0033291716001410.CrossRefGoogle Scholar
  51. Wang, H., Guo, W., Liu, F., Wang, G., Lyu, H., Wu, R., Chen, J., Wang, S., Li, L., & Zhao, J. (2016a). Patients with first-episode, drug-naive schizophrenia and subjects at ultra-high risk of psychosis shared increased cerebellar-default mode network connectivity at rest. Scientific Reports, 6, 26124.  https://doi.org/10.1038/srep26124.CrossRefGoogle Scholar
  52. White, T. P., Gilleen, J., & Shergill, S. S. (2013). Dysregulated but not decreased salience network activity in schizophrenia. Frontiers in Human Neuroscience, 7, 65.  https://doi.org/10.3389/fnhum.2013.00065.CrossRefGoogle Scholar
  53. Whitfield-Gabrieli, S., & Ford, J. M. (2012). Default mode network activity and connectivity in psychopathology. Annual Review of Clinical Psychology, 8, 49–76.  https://doi.org/10.1146/annurev-clinpsy-032511-143049.CrossRefGoogle Scholar
  54. Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity, 2(3), 125–141.  https://doi.org/10.1089/brain.2012.0073.CrossRefGoogle Scholar
  55. Woodward, N. D., Rogers, B., & Heckers, S. (2011). Functional resting-state networks are differentially affected in schizophrenia. Schizophrenia Research, 130(1–3), 86–93.  https://doi.org/10.1016/j.schres.2011.03.010.CrossRefGoogle Scholar
  56. Wotruba, D., Michels, L., Buechler, R., Metzler, S., Theodoridou, A., Gerstenberg, M., Walitza, S., Kollias, S., Rössler, W., & Heekeren, K. (2014). Aberrant coupling within and across the default mode, task-positive, and salience network in subjects at risk for psychosis. Schizophrenia Bulletin, 40(5), 1095–1104.  https://doi.org/10.1093/schbul/sbt161.CrossRefGoogle Scholar
  57. Zhou, Y., Fan, L., Qiu, C., & Jiang, T. (2015). Prefrontal cortex and the dysconnectivity hypothesis of schizophrenia. Neuroscience Bulletin, 31(2), 207–219.  https://doi.org/10.1007/s12264-014-1502-8.CrossRefGoogle Scholar
  58. Zhuo, C., Wang, C., Wang, L., Guo, X., Xu, Q., Liu, Y., et al. (2017). Altered resting-state functional connectivity of the cerebellum in schizophrenia. Brain Imaging Behav.  https://doi.org/10.1007/s11682-017-9704-0.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Huan Huang
    • 1
    • 2
  • Zeng Botao
    • 3
  • Yuchao Jiang
    • 4
  • Yingying Tang
    • 2
  • Tianhong Zhang
    • 2
  • Xiaochen Tang
    • 2
  • Lihua Xu
    • 2
  • Junjie Wang
    • 2
  • Jin Li
    • 2
  • Zhenying Qian
    • 2
  • Xu Liu
    • 2
  • Huiling Wang
    • 1
  • Cheng Luo
    • 4
  • Chunbo Li
    • 2
    • 5
    • 6
  • Jian Xu
    • 7
    Email author
  • Donald Goff
    • 8
  • Jijun Wang
    • 2
    • 5
    • 6
    Email author
  1. 1.Department of PsychiatryRenmin Hospital of Wuhan UniversityWuhanChina
  2. 2.Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
  3. 3.Department of PsychiatryQingdao Mental Health CenterQingdaoChina
  4. 4.Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
  5. 5.CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT)Chinese Academy of ScienceBeijingChina
  6. 6.Brain Science and Technology Research CenterShanghai Jiao Tong UniversityShanghaiChina
  7. 7.Department of NeurologyNantong University Affiliated Mental Health CenterNantongChina
  8. 8.Department of PsychiatryNew York University Langone Medical CenterNew YorkUSA

Personalised recommendations