Advertisement

Regional growth trajectories of cortical myelination in adolescents and young adults: longitudinal validation and functional correlates

  • Dongjin Kwon
  • Adolf Pfefferbaum
  • Edith V. Sullivan
  • Kilian M. PohlEmail author
Original Research

Abstract

Adolescence is a time of continued cognitive and emotional evolution occurring with continuing brain development involving synaptic pruning and cortical myelination. The hypothesis of this study is that heavy myelination occurs in cortical regions with relatively direct, predetermined circuitry supporting unimodal sensory or motor functions and shows a steep developmental slope during adolescence (12–21 years) until young adulthood (22–35 years) when further myelination decelerates. By contrast, light myelination occurs in regions with highly plastic circuitry supporting complex functions and follows a delayed developmental trajectory. In support of this hypothesis, cortical myelin content was estimated and harmonized across publicly available datasets provided by the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA) and the Human Connectome Project (HCP). The cross-sectional analysis of 226 no-to-low alcohol drinking NCANDA adolescents revealed relatively steeper age-dependent trajectories of myelin growth in unimodal primary motor cortex and flatter age-dependent trajectories in multimodal mid/posterior cingulate cortices. This pattern of continued myelination showed smaller gains when the same analyses were performed on 686 young adults of the HCP cohort free of neuropsychiatric diagnoses. Critically, a predicted correlation between a motor task and myelin content in motor or cingulate cortices was found in the NCANDA adolescents, supporting the functional relevance of this imaging neurometric. Furthermore, the regional trajectory slopes were confirmed by performing longitudinally consistent analysis of cortical myelin. In conclusion, coordination of myelin content and circuit complexity continues to develop throughout adolescence, contributes to performance maturation, and may represent active cortical development climaxing in young adulthood.

Keywords

Cortical myelin Development Adolescence Early adulthood 

Notes

Funding

This work was funded by grants from the U.S. National Institute on Alcohol Abuse and Alcoholism: AA021697, AA005965, AA010723, AA017168.

Compliance with ethical standards

Conflict of interest

None of the authors have conflicts of interest with the reported data or their interpretation.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders : DSM-IV-TR (4th ed.p. 943). Washington, DC: American Psychiatric Association) xxxvii.Google Scholar
  2. Arshad, M., Stanley, J. A., & Raz, N. (2017). Test-retest reliability and concurrent validity of in vivo myelin content indices: Myelin water fraction and calibrated T1 w/T2 w image ratio. Human Brain Mapping, 38(4), 1780–1790.CrossRefGoogle Scholar
  3. Avants, B. B., Epstein, C.L., Grossman, M., & Gee, J.C.  (2008). Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12(1), 26–41.CrossRefGoogle Scholar
  4. Bava, S., & Tapert, S. F. (2010). Adolescent brain development and the risk for alcohol and other drug problems. Neuropsychology Review, 20(4), 398–413.CrossRefGoogle Scholar
  5. Bernal-Rusiel, J. L., Greve D. N., Reuter M., Fischl B., Sabuncu M. R., & Alzheimer's Disease Neuroimaging. (2013) Statistical analysis of longitudinal neuroimage data with linear mixed effects models. Neuroimage, 66, 249–260.Google Scholar
  6. Boca, S. M., Sinha, R., Cross, A. J., Moore, S. C., & Sampson, J. N. (2014). Testing multiple biological mediators simultaneously. Bioinformatics, 30(2), 214–220.CrossRefGoogle Scholar
  7. Bock, N. A., Kocharyan, A., Liu, J. V., & Silva, A. C. (2009). Visualizing the entire cortical myelination pattern in marmosets with magnetic resonance imaging. Journal of Neuroscience Methods, 185(1), 15–22.CrossRefGoogle Scholar
  8. Bock, N. A., Hashim, E., Janik, R., Konyer, N. B., Weiss, M., Stanisz, G. J., Turner, R., & Geyer, S. (2013). Optimizing T1-weighted imaging of cortical myelin content at 3.0 T. Neuroimage, 65, 1–12.CrossRefGoogle Scholar
  9. Brown, S. A., Brumback, T., Tomlinson, K., Cummins, K., Thompson, W. K., Nagel, B. J., de Bellis, M. D., Hooper, S. R., Clark, D. B., Chung, T., Hasler, B. P., Colrain, I. M., Baker, F. C., Prouty, D., Pfefferbaum, A., Sullivan, E. V., Pohl, K. M., Rohlfing, T., Nichols, B. N., Chu, W., & Tapert, S. F. (2015). The National Consortium on alcohol and NeuroDevelopment in adolescence (NCANDA): A multisite study of adolescent development and substance use. Journal of Studies on Alcohol and Drugs, 76(6), 895–908.CrossRefGoogle Scholar
  10. Casey, B. J., Giedd, J. N., & Thomas, K. M. (2000). Structural and functional brain development and its relation to cognitive development. Biological Psychology, 54(1–3), 241–257.CrossRefGoogle Scholar
  11. Coupe, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., & Barillot, C. (2008). An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Transactions on Medical Imaging, 27(4), 425–441.CrossRefGoogle Scholar
  12. Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29(3), 162–173.CrossRefGoogle Scholar
  13. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9(2), 179–194.CrossRefGoogle Scholar
  14. Fischl, B. (2012). FreeSurfer. Neuroimage, 62(2), 774–781.CrossRefGoogle Scholar
  15. Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage, 9(2), 195–207.CrossRefGoogle Scholar
  16. Fischl, B., Salat, D. H., van der Kouwe, A. J., Makris, N., Ségonne, F., Quinn, B. T., & Dale, A. M. (2004). Sequence-independent segmentation of magnetic resonance images. Neuroimage, 23(Suppl, 1), S69–S84.CrossRefGoogle Scholar
  17. Fjell, A. M., Walhovd, K. B., Brown, T. T., Kuperman, J. M., Chung, Y., Hagler, D. J., Venkatraman, V., Roddey, J. C., Erhart, M., McCabe, C., Akshoomoff, N., Amaral, D. G., Bloss, C. S., Libiger, O., Darst, B. F., Schork, N. J., Casey, B. J., Chang, L., Ernst, T. M., Gruen, J. R., Kaufmann, W. E., Kenet, T., Frazier, J., Murray, S. S., Sowell, E. R., van Zijl, P., Mostofsky, S., Jernigan, T. L., Dale, A. M., for the Pediatric Imaging, Neurocognition, and Genetics Study, Jernigan, T. L., McCabe, C., Chang, L., Akshoomoff, N., Newman, E., Dale, A. M., Ernst, T., Dale, A. M., van Zijl, P., Kuperman, J., Murray, S., Bloss, C., Schork, N. J., Appelbaum, M., Gamst, A., Thompson, W., Bartsch, H., Jernigan, T. L., Dale, A. M., Akshoomoff, N., Chang, L., Ernst, T., Keating, B., Amaral, D., Sowell, E., Kaufmann, W., van Zijl, P., Mostofsky, S., Casey, B. J., Ruberry, E. J., Powers, A., Rosen, B., Kenet, T., Frazier, J., Kennedy, D., & Gruen, J. (2012). Multimodal imaging of the self-regulating developing brain. Proceedings of the National Academy of Sciences of the United States of America, 109(48), 19620–19625.CrossRefGoogle Scholar
  18. Fukunaga, M., Li, T. Q., van Gelderen, P., de Zwart, J. A., Shmueli, K., Yao, B., Lee, J., Maric, D., Aronova, M. A., Zhang, G., Leapman, R. D., Schenck, J. F., Merkle, H., & Duyn, J. H. (2010). Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3834–3839.CrossRefGoogle Scholar
  19. Ganzetti, M., Wenderoth, N., & Mantini, D. (2014). Whole brain myelin mapping using T1- and T2-weighted MR imaging data. Frontiers in Human Neuroscience, 8, 671.CrossRefGoogle Scholar
  20. Giedd, J. N., Raznahan, A., Alexander-Bloch, A., Schmitt, E., Gogtay, N., & Rapoport, J. L. (2015). Child psychiatry branch of the National Institute of Mental Health longitudinal structural magnetic resonance imaging study of human brain development. Neuropsychopharmacology, 40(1), 43–49.CrossRefGoogle Scholar
  21. Glasser, M. F., & Van Essen, D. C. (2011). Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. The Journal of Neuroscience, 31(32), 11597–11616.CrossRefGoogle Scholar
  22. Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J. R., van Essen, D., Jenkinson, M., & WU-Minn HCP Consortium. (2013). The minimal preprocessing pipelines for the human connectome project. Neuroimage, 80, 105–124.CrossRefGoogle Scholar
  23. Glasser, M. F., Goyal, M. S., Preuss, T. M., Raichle, M. E., & Van Essen, D. C. (2014). Trends and properties of human cerebral cortex: Correlations with cortical myelin content. Neuroimage, 93(Pt, 2), 165–175.CrossRefGoogle Scholar
  24. Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., Ugurbil, K., Andersson, J., Beckmann, C. F., Jenkinson, M., Smith, S. M., & van Essen, D. C. (2016). A multi-modal parcellation of human cerebral cortex. Nature, 536(7615), 171–178.CrossRefGoogle Scholar
  25. Grydeland, H., Walhovd, K. B., Tamnes, C. K., Westlye, L. T., & Fjell, A. M. (2013). Intracortical myelin links with performance variability across the human lifespan: Results from T1- and T2-weighted MRI myelin mapping and diffusion tensor imaging. The Journal of Neuroscience, 33(47), 18618–18630.CrossRefGoogle Scholar
  26. Grydeland, H., Westlye, L. T., Walhovd, K. B., & Fjell, A. M. (2016). Intracortical posterior cingulate myelin content relates to error processing: Results from T1- and T2-weighted MRI myelin mapping and electrophysiology in healthy adults. Cerebral Cortex, 26(6), 2402–2410.CrossRefGoogle Scholar
  27. Iglesias, J. E., Liu C.-Y., Thompson, P. M., & Tu, Z. (2011). Robust brain extraction across datasets and comparison with publicly available methods. IEEE Transactions on Medical Imaging, 30(9), 1617–1634.CrossRefGoogle Scholar
  28. Jernigan, T. L., Trauner, D. A., Hesselink, J. R., & Tallal, P. A. (1991). Maturation of human cerebrum observed in vivo during adolescence. Brain, 114(Pt 5), 2037–2049.CrossRefGoogle Scholar
  29. Keefe, R. S., & Fenton, W. S. (2007). How should DSM-V criteria for schizophrenia include cognitive impairment? Schizophrenia Bulletin, 33(4), 912–920.CrossRefGoogle Scholar
  30. Kochunov, P., Ganjgahi, H., Winkler, A., Kelly, S., Shukla, D. K., du, X., Jahanshad, N., Rowland, L., Sampath, H., Patel, B., O'Donnell, P., Xie, Z., Paciga, S. A., Schubert, C. R., Chen, J., Zhang, G., Thompson, P. M., Nichols, T. E., & Hong, L. E. (2016). Heterochronicity of white matter development and aging explains regional patient control differences in schizophrenia. Human Brain Mapping, 37(12), 4673–4688.CrossRefGoogle Scholar
  31. Lafayette-Instrument (2002), Grooved pegboard test user instructions (Model32025), (Rel. 9.2.03: Lafayette Instrument).Google Scholar
  32. Leuze, C., Aswendt, M., Ferenczi, E., Liu, C. W., Hsueh, B., Goubran, M., Tian, Q., Steinberg, G., Zeineh, M. M., Deisseroth, K., & McNab, J. A. (2017). The separate effects of lipids and proteins on brain MRI contrast revealed through tissue clearing. Neuroimage, 156, 412–422.CrossRefGoogle Scholar
  33. Lutti, A., Dick, F., Sereno, M. I., & Weiskopf, N. (2014). Using high-resolution quantitative mapping of R1 as an index of cortical myelination. Neuroimage, 93(Pt, 2), 176–188.CrossRefGoogle Scholar
  34. MacKay, A., Whittall, K., Adler, J., Li, D., Paty, D., & Graeb, D. (1994). In vivo visualization of myelin water in brain by magnetic resonance. Magnetic Resonance in Medicine, 31(6), 673–677.CrossRefGoogle Scholar
  35. Miller, D. J., Duka, T., Stimpson, C. D., Schapiro, S. J., Baze, W. B., McArthur, M. J., Fobbs, A. J., Sousa, A. M. M., Sestan, N., Wildman, D. E., Lipovich, L., Kuzawa, C. W., Hof, P. R., & Sherwood, C. C. (2012). Prolonged myelination in human neocortical evolution. Proceedings of the National Academy of Sciences of the United States of America, 109(41), 16480–16485.CrossRefGoogle Scholar
  36. Muller-Oehring, E. M., Kwon, D., Nagel, B., Sullivan, E. V., Chu, W., Rohlfing, T., Prouty, D., Nichols, B. N., Poline, J. B., Tapert, S. F., Brown, S. A., Cummins, K., Brumback, T., Colrain, I. M., Baker, F. C., De Bellis, M. D., Voyvodic, J. T., Clark, D. B., Pfefferbaum, A., & Pohl, K. M. (2018). Influences of age, sex, and moderate alcohol drinking on the intrinsic functional architecture of adolescent brains. Cerebral Cortex, 28(3), 1049–1063.CrossRefGoogle Scholar
  37. Nichols, B. N., & Pohl, K. M. (2015). Neuroinformatics software applications supporting electronic data capture, management, and sharing for the neuroimaging community. Neuropsychology Review, 25(3), 356–368.CrossRefGoogle Scholar
  38. Nieuwenhuys, R. (2013). The myeloarchitectonic studies on the human cerebral cortex of the Vogt-Vogt school, and their significance for the interpretation of functional neuroimaging data. Brain Structure & Function, 218(2), 303–352.CrossRefGoogle Scholar
  39. Ohtani, T., Levitt, J. J., Nestor, P. G., Kawashima, T., Asami, T., Shenton, M. E., Niznikiewicz, M., & McCarley, R. W. (2014). Prefrontal cortex volume deficit in schizophrenia: A new look using 3T MRI with manual parcellation. Schizophrenia Research, 152(1), 184–190.CrossRefGoogle Scholar
  40. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113.CrossRefGoogle Scholar
  41. Pasternak, O., Westin, C. F., Bouix, S., Seidman, L. J., Goldstein, J. M., Woo, T. U. W., Petryshen, T. L., Mesholam-Gately, R. I., McCarley, R. W., Kikinis, R., Shenton, M. E., & Kubicki, M. (2012). Excessive extracellular volume reveals a neurodegenerative pattern in schizophrenia onset. The Journal of Neuroscience, 32(48), 17365–17372.CrossRefGoogle Scholar
  42. Pfefferbaum, A., Rohlfing, T., Pohl, K. M., Lane, B., Chu, W., Kwon, D., Nolan Nichols, B., Brown, S. A., Tapert, S. F., Cummins, K., Thompson, W. K., Brumback, T., Meloy, M. J., Jernigan, T. L., Dale, A., Colrain, I. M., Baker, F. C., Prouty, D., de Bellis, M. D., Voyvodic, J. T., Clark, D. B., Luna, B., Chung, T., Nagel, B. J., & Sullivan, E. V. (2016). Adolescent development of cortical and white matter structure in the NCANDA sample: Role of sex, ethnicity, puberty, and alcohol drinking. Cerebral Cortex, 26(10), 4101–4121.CrossRefGoogle Scholar
  43. Pohl, K. M., Sullivan, E. V., Rohlfing, T., Chu, W., Kwon, D., Nichols, B. N., Zhang, Y., Brown, S. A., Tapert, S. F., Cummins, K., Thompson, W. K., Brumback, T., Colrain, I. M., Baker, F. C., Prouty, D., de Bellis, M. D., Voyvodic, J. T., Clark, D. B., Schirda, C., Nagel, B. J., & Pfefferbaum, A. (2016). Harmonizing DTI measurements across scanners to examine the development of white matter microstructure in 803 adolescents of the NCANDA study. Neuroimage, 130, 194–213.CrossRefGoogle Scholar
  44. Purger, D., Gibson, E. M., and Monje, M. (2016), Myelin plasticity in the central nervous system, Neuropharmacology, 110 (Pt B), 563–73.Google Scholar
  45. Raznahan, A., Greenstein, D., Lee, N. R., Clasen, L. S., & Giedd, J. N. (2012). Prenatal growth in humans and postnatal brain maturation into late adolescence. Proceedings of the National Academy of Sciences of the United States of America, 109(28), 11366–11371.CrossRefGoogle Scholar
  46. Robinson, E. C., Jbabdi, S., Glasser, M. F., Andersson, J., Burgess, G. C., Harms, M. P., Smith, S. M., van Essen, D. C., & Jenkinson, M. (2014). MSM: A new flexible framework for multimodal surface matching. Neuroimage, 100, 414–426.CrossRefGoogle Scholar
  47. Rohlfing, T., & Maurer Jr., C. R. (2003). Nonrigid image registration in shared-memory multiprocessor environments with application to brains, breasts, and bees. IEEE Transactions on Information Technology in Biomedicine, 7(1), 16–25.CrossRefGoogle Scholar
  48. Rohlfing, T., Russakoff, D. B., & Maurer Jr., C. R. (2004). Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation. IEEE Transactions on Medical Imaging, 23(8), 983–994.CrossRefGoogle Scholar
  49. Rohlfing, T., Cummins, K., Henthorn, T., Chu, W., & Nichols, B. N. (2014). N-CANDA data integration: Anatomy of an asynchronous infrastructure for multi-site, multi-instrument longitudinal data capture. Journal of the American Medical Informatics Association, 21(4), 758–762.CrossRefGoogle Scholar
  50. Rowley, C. D., Sehmbi M., Bazin, P.-L., Tardif, C. L., Minuzzi, L., Frey, B. N., & Bock, N. (2017). Age-related mapping of intracortical myelin from late adolescence to middle adulthood using T1 -weighted MRI. Human Brain Mapping, 38(7), 3691–3703.Google Scholar
  51. Sadananthan, S. A., Zheng, W., Chee, M. W. L., & Zagorodnov, V. (2010). Skull stripping using graph cuts. Neuroimage, 49(1), 225–239.CrossRefGoogle Scholar
  52. Selemon, L. D. (2013). A role for synaptic plasticity in the adolescent development of executive function. Translational Psychiatry, 3, e238.CrossRefGoogle Scholar
  53. Shafee, R., Buckner, R. L., & Fischl, B. (2015). Gray matter myelination of 1555 human brains using partial volume corrected MRI images. Neuroimage, 105, 473–485.CrossRefGoogle Scholar
  54. Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., Greenstein, D., Clasen, L., Evans, A., Rapoport, J. L., Giedd, J. N., & Wise, S. P. (2008). Neurodevelopmental trajectories of the human cerebral cortex. The Journal of Neuroscience, 28(14), 3586–3594.CrossRefGoogle Scholar
  55. Sigalovsky, I. S., Fischl, B., & Melcher, J. R. (2006). Mapping an intrinsic MR property of gray matter in auditory cortex of living humans: A possible marker for primary cortex and hemispheric differences. Neuroimage, 32(4), 1524–1537.CrossRefGoogle Scholar
  56. Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17(1), 87–97.CrossRefGoogle Scholar
  57. Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155.CrossRefGoogle Scholar
  58. Snaidero, N., & Simons, M. (2017). The logistics of myelin biogenesis in the central nervous system. Glia, 65(7), 1021–1031.CrossRefGoogle Scholar
  59. Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L., & Toga, A. W. (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6(3), 309–315.CrossRefGoogle Scholar
  60. Squeglia, L. M., Tapert, S. F., Sullivan, E. V., Jacobus, J., Meloy, M. J., Rohlfing, T., & Pfefferbaum, A. (2015). Brain development in heavy-drinking adolescents. The American Journal of Psychiatry, 172(6), 531–542.CrossRefGoogle Scholar
  61. Stiles, J., & Jernigan, T. L. (2010). The basics of brain development. Neuropsychology Review, 20(4), 327–348.CrossRefGoogle Scholar
  62. Stüber, C., Morawski, M., Schäfer, A., Labadie, C., Wähnert, M., Leuze, C., Streicher, M., Barapatre, N., Reimann, K., Geyer, S., Spemann, D., & Turner, R. (2014). Myelin and iron concentration in the human brain: A quantitative study of MRI contrast. Neuroimage, 93(Pt 1), 95–106.CrossRefGoogle Scholar
  63. Sullivan, E. V., Brumback, T., Tapert, S. F., Fama, R., Prouty, D., Brown, S. A., Cummins, K., Thompson, W. K., Colrain, I. M., Baker, F. C., de Bellis, M. D., Hooper, S. R., Clark, D. B., Chung, T., Nagel, B. J., Nichols, B. N., Rohlfing, T., Chu, W., Pohl, K. M., & Pfefferbaum, A. (2016). Cognitive, emotion control, and motor performance of adolescents in the NCANDA study: Contributions from alcohol consumption, age, sex, ethnicity, and family history of addiction. Neuropsychology, 30(4), 449–473.CrossRefGoogle Scholar
  64. Tomassy, G. S., Dershowitz, L. B., & Arlotta, P. (2016). Diversity matters: A revised guide to myelination. Trends in Cell Biology, 26(2), 135–147.CrossRefGoogle Scholar
  65. Tustison, N. J., Avants, B. B., Cook, P. A., Yuanjie Zheng, Egan, A., Yushkevich, P. A., & Gee, J. C. (2010). N4ITK: Improved N3 bias correction. IEEE Transactions on Medical Imaging, 29(6), 1310–1320.CrossRefGoogle Scholar
  66. Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E., & Ugurbil, K. (2013). The WU-Minn human connectome project: An overview. Neuroimage, 80, 62–79.CrossRefGoogle Scholar
  67. Vogt, B. A. (2016). Midcingulate cortex: Structure, connections, homologies, functions and diseases. Journal of Chemical Neuroanatomy, 74, 28–46.CrossRefGoogle Scholar
  68. Vogt, B. A., Nimchinsky, E. A., Vogt, L. J., & Hof, P. R. (1995). Human cingulate cortex: Surface features, flat maps, and cytoarchitecture. The Journal of Comparative Neurology, 359(3), 490–506.CrossRefGoogle Scholar
  69. Whittall, K. P., Mackay, A. L., Graeb, D. A., Nugent, R. A., Li, D. K. B., & Paty, D. W. (1997). In vivo measurement of T2 distributions and water contents in normal human brain. Magnetic Resonance in Medicine, 37(1), 34–43.CrossRefGoogle Scholar
  70. Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014). Permutation inference for the general linear model. Neuroimage, 92, 381–397.CrossRefGoogle Scholar
  71. Yoshiura, T., Higano, S., Rubio, A., Shrier, D. A., Kwok, W. E., Iwanaga, S., & Numaguchi, Y. (2000). Heschl and superior temporal gyri: Low signal intensity of the cortex on T2-weighted MR images of the normal brain. Radiology, 214(1), 217–221.CrossRefGoogle Scholar
  72. Zipursky, R. B., Lim, K. O., Sullivan, E. V., Brown, B. W., & Pfefferbaum, A. (1992). Widespread cerebral gray matter volume deficits in schizophrenia. Archives of General Psychiatry, 49, 195–205.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Psychiatry and Behavioral SciencesStanford UniversityStanfordUSA
  2. 2.Center for Health SciencesSRI InternationalMenlo ParkUSA

Personalised recommendations