Advertisement

Radiation-induced hippocampal atrophy in patients with nasopharyngeal carcinoma early after radiotherapy: a longitudinal MR-based hippocampal subfield analysis

  • Xiaofei Lv
  • Haoqiang He
  • Yadi Yang
  • Lujun Han
  • Zheng Guo
  • Hong Chen
  • Jing Li
  • Yingwei QiuEmail author
  • Chuanmiao XieEmail author
Original Research
  • 167 Downloads

Abstract

Increasing evidence indicates that radiation-induced injury to the hippocampus may play a critical role in neurocognitive dysfunction in patients with nasopharyngeal carcinoma (NPC). However, few studies have assessed RT-induced hippocampal structural alterations in these patients early after radiotherapy (RT). In this study, 58 NPC patients were longitudinally followed up prior to treatment initiation as well as 3 and 6 months after RT, respectively. Twenty comparable normal controls were recruited and followed up in parallel. A novel magnetic resonance imaging (MRI)-based automated method was used to label hippocampal subfields. The linear mixed model was employed to evaluate longitudinal changes in the volumes of the whole hippocampus and seven hippocampal subfields. Time-dependent volume reduction was observed in the bilateral hippocampus, as well as in the bilateral granule cell layer (GCL), bilateral cornu ammonis 1 (CA1), bilateral molecular layer (ML), and bilateral subiculum (SUB) in NPC patients, but not in controls. Moreover, volume deficits in the bilateral hippocampus, bilateral GCL, and right ML showed dose-dependent patterns, and high volume losses in the bilateral hippocampus, bilateral GCL, left SUB, and right ML were associated with a rapid decline in cognitive function. Our findings demonstrated that the hippocampal subfields were selectively injured by irradiation-related early neurotoxic effects, which might account for cognitive impairment in NPC patients at an early stage after RT. Further, structural MRI could serve as a potential noninvasive imaging biomarker for the early detection of radiation effects on the hippocampus in NPC patients after RT.

Keywords

Radiotherapy Radiation-induced injury Nasopharyngeal carcinoma Hippocampus Hippocampal subfields Structural MRI 

Notes

Funding

This work was funded by grants from the Natural Scientific Foundation of China (grant numbers: 81401399, 81560283, and 81201084), Natural Scientific Foundation of Jiangxi Province, China (grant number: 20151BAB205049), Fundamental Research Funds for the Central Universities (Grant number: 15ykpy35), and Medical Scientific Research Foundation of Guangdong Province (Grant number: B2014162).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

11682_2018_9931_Fig6_ESM.png (2.7 mb)
ESM 1

(PNG 2761 kb)

11682_2018_9931_MOESM1_ESM.tif (11.7 mb)
High resolution image (TIF 12030 kb)
11682_2018_9931_MOESM2_ESM.docx (119 kb)
ESM 2 (DOCX 118 kb)

References

  1. Balentova, S., & Adamkov, M. (2015). Molecular, cellular and functional effects of radiation-induced brain injury: A review. International Journal of Molecular Sciences, 16(11), 27796–27815.  https://doi.org/10.3390/ijms161126068.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bates, D., Mächler M., Bolker B., & Walker S. (2014). Fitting linear mixed-effects models using lme4. arXiv:1406.5823 [stat.CO].Google Scholar
  3. Bobinski, M., de Leon M. J., Wegiel J., Desanti S., Convit A., Saint L. L., et al. (2000). The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer's disease. Neuroscience, 95(3), 721–725.Google Scholar
  4. Brown, W. R., Thore, C. R., Moody, D. M., Robbins, M. E., & Wheeler, K. T. (2005). Vascular damage after fractionated whole-brain irradiation in rats. Radiation Research, 164(5), 662–668.CrossRefPubMedGoogle Scholar
  5. Cao, B., Passos I. C., Mwangi B., Amaral-Silva H., Tannous J., Wu M. J., et al. (2017). Hippocampal subfield volumes in mood disorders. Molecular Psychiatry, 22(9), 1352–1358.  https://doi.org/10.1038/mp.2016.262.
  6. Chapman, C. H., Nagesh V., Sundgren P. C., Buchtel H., Chenevert T. L., Junck L., et al. (2012). Diffusion tensor imaging of normal-appearing white matter as biomarker for radiation-induced late delayed cognitive decline. International Journal of Radiation Oncology, Biology, Physics, 82(5), 2033–2040.  https://doi.org/10.1016/j.ijrobp.2011.01.068.
  7. Chen, S. C., Abe Y., Fang P. T., Hsieh Y. J., Yang Y. I., Lu T. Y., et al. (2017). Prognosis of hippocampal function after sub-lethal irradiation brain injury in patients with nasopharyngeal carcinoma. Scientific Reports, 7(1), 14697.  https://doi.org/10.1038/s41598-017-13972-2.
  8. Chittajallu, R., Kunze, A., Mangin, J. M., & Gallo, V. (2007). Differential synaptic integration of interneurons in the outer and inner molecular layers of the developing dentate gyrus. The Journal of Neuroscience, 27(31), 8219–8225.  https://doi.org/10.1523/JNEUROSCI.2476-07.2007.CrossRefPubMedGoogle Scholar
  9. Chmielewski, N. N., Caressi, C., Giedzinski, E., Parihar, V. K., & Limoli, C. L. (2016). Contrasting the effects of proton irradiation on dendritic complexity of subiculum neurons in wild type and MCAT mice. Environmental and Molecular Mutagenesis, 57(5), 364–371.  https://doi.org/10.1002/em.22006.CrossRefPubMedGoogle Scholar
  10. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage, 9(2), 179–194.  https://doi.org/10.1006/nimg.1998.0395.CrossRefPubMedGoogle Scholar
  11. Decker, A. L., Szulc K. U., Bouffet E., Laughlin S., Chakravarty M. M., Skocic J., et al. (2017). Smaller hippocampal subfield volumes predict verbal associative memory in pediatric brain tumor survivors. Hippocampus, 27(11), 1140–1154.  https://doi.org/10.1002/hipo.22758.
  12. Dietrich, J., Prust, M., & Kaiser, J. (2015). Chemotherapy, cognitive impairment and hippocampal toxicity. Neuroscience, 309(26), 224–232.  https://doi.org/10.1016/j.neuroscience.2015.06.016.CrossRefPubMedGoogle Scholar
  13. Ding, Z., Zhang H., Lv X. F., Xie F., Liu L., Qiu S., et al. (2018). Radiation-induced brain structural and functional abnormalities in presymptomatic phase and outcome prediction. Human Brain Mapping, 39(1), 407–427.  https://doi.org/10.1002/hbm.23852.
  14. Farjam, R., Pramanik P., Aryal M. P., Srinivasan A., Chapman C. H., Tsien C. I., et al. (2015). A radiation-induced hippocampal vascular injury surrogate marker predicts late neurocognitive dysfunction. International Journal of Radiation Oncology, Biology, Physics, 93(4), 908–915.  https://doi.org/10.1016/j.ijrobp.2015.08.014.
  15. Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9(2), 195–207.  https://doi.org/10.1006/nimg.1998.0396.CrossRefPubMedGoogle Scholar
  16. Fischl, B., Salat D. H., Busa E., Albert M., Dieterich M., Haselgrove C., et al. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341–355.Google Scholar
  17. Fischl, B., van der Kouwe A., Destrieux C., Halgren E., Segonne F., Salat D. H., et al. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1), 11–22.Google Scholar
  18. Gazdzinski, L. M., Cormier, K., Lu, F. G., Lerch, J. P., Wong, C. S., & Nieman, B. J. (2012). Radiation-induced alterations in mouse brain development characterized by magnetic resonance imaging. International Journal of Radiation Oncology, Biology, Physics, 84(5), e631–e638.  https://doi.org/10.1016/j.ijrobp.2012.06.053.CrossRefPubMedGoogle Scholar
  19. Ghia, A., Tome W. A., Thomas S., Cannon G., Khuntia D., Kuo J. S., et al. (2007). Distribution of brain metastases in relation to the hippocampus: Implications for neurocognitive functional preservation. International Journal of Radiation Oncology, Biology, Physics, 68(4), 971–977.  https://doi.org/10.1016/j.ijrobp.2007.02.016.
  20. Gondi, V., Pugh S. L., Tome W. A., Caine C., Corn B., Kanner A., et al. (2014). Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): A phase II multi-institutional trial. Journal of Clinical Oncology, 32(34), 3810–3816.  https://doi.org/10.1200/JCO.2014.57.2909.
  21. Greene-Schloesser, D., Robbins, M. E., Peiffer, A. M., Shaw, E. G., Wheeler, K. T., & Chan, M. D. (2012). Radiation-induced brain injury: A review. Frontiers in Oncology, 2, 73.  https://doi.org/10.3389/fonc.2012.00073.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hatanpaa, K. J., Raisanen J. M., Herndon E., Burns D. K., Foong C., Habib A. A., et al. (2014). Hippocampal sclerosis in dementia, epilepsy, and ischemic injury: Differential vulnerability of hippocampal subfields. Journal of Neuropathology and Experimental Neurology, 73(2), 136–142.  https://doi.org/10.1097/OPX.0000000000000170.
  23. Hellstrom, N. A., Bjork-Eriksson, T., Blomgren, K., & Kuhn, H. G. (2009). Differential recovery of neural stem cells in the subventricular zone and dentate gyrus after ionizing radiation. Stem Cells, 27(3), 634–641.  https://doi.org/10.1634/stemcells.2008-0732.CrossRefPubMedGoogle Scholar
  24. Iglesias, J. E., Augustinack J. C., Nguyen K., Player C. M., Player A., Wright M., et al. (2015). A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. NeuroImage, 115, 117–137.  https://doi.org/10.1016/j.neuroimage.2015.04.042.
  25. Karunamuni, R., Bartsch H., White N. S., Moiseenko V., Carmona R., Marshall D. C., et al. (2016). Dose-dependent cortical thinning after partial brain irradiation in high-grade glioma. International Journal of Radiation Oncology, Biology, Physics, 94(2), 297–304.  https://doi.org/10.1016/j.ijrobp.2015.10.026.
  26. Lee, N., Harris J., Garden A. S., Straube W., Glisson B., Xia P., et al. (2009). Intensity-modulated radiation therapy with or without chemotherapy for nasopharyngeal carcinoma: Radiation therapy oncology group phase II trial 0225. Journal of Clinical Oncology, 27(22), 3684–3690.  https://doi.org/10.1200/JCO.2008.19.9109.
  27. Lee, A. W., Ma, B. B., Ng, W. T., & Chan, A. T. (2015). Management of Nasopharyngeal Carcinoma: Current practice and future perspective. Journal of Clinical Oncology, 33(29), 3356–3364.  https://doi.org/10.1200/JCO.2015.60.9347.CrossRefPubMedGoogle Scholar
  28. Lin, J., Lv X., Niu M., Liu L., Chen J., Xie F., et al. (2017). Radiation-induced abnormal cortical thickness in patients with nasopharyngeal carcinoma after radiotherapy. NeuroImage: Clinical, 14, 610–621.  https://doi.org/10.1016/j.nicl.2017.02.025.
  29. Long, J. D. (2011). Longitudinal data analysis for the behavioral sciences using R. Thousand Oaks, CA: Sage.Google Scholar
  30. Lv, X. F., Zheng X. L., Zhang W. D., Liu L. Z., Zhang Y. M., Chen M. Y., et al. (2014). Radiation-induced changes in normal-appearing gray matter in patients with nasopharyngeal carcinoma: A magnetic resonance imaging voxel-based morphometry study. Neuroradiology, 56(5), 423–430.  https://doi.org/10.1007/s00234-014-1338-y.
  31. Makale, M. T., McDonald, C. R., Hattangadi-Gluth, J. A., & Kesari, S. (2017). Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nature Reviews Neurology, 13(1), 52–64.  https://doi.org/10.1038/nrneurol.2016.185.CrossRefPubMedGoogle Scholar
  32. Mao, Y. P., Zhou G. Q., Liu L. Z., Guo R., Sun Y., Li L., et al. (2014). Comparison of radiological and clinical features of temporal lobe necrosis in nasopharyngeal carcinoma patients treated with 2D radiotherapy or intensity-modulated radiotherapy. British Journal of Cancer, 110(11), 2633–2639.  https://doi.org/10.1038/bjc.2014.243.
  33. Morrell, C. H., Brant, L. J., & Ferrucci, L. (2009). Model choice can obscure results in longitudinal studies. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 64(2), 215–222.  https://doi.org/10.1093/gerona/gln024.CrossRefGoogle Scholar
  34. Mueller, S. G., Chao, L. L., Berman, B., & Weiner, M. W. (2011). Evidence for functional specialization of hippocampal subfields detected by MR subfield volumetry on high resolution images at 4 T. NeuroImage, 56(3), 851–857.  https://doi.org/10.1016/j.neuroimage.2011.03.028.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Nasreddine, Z. S., Phillips N. A., Bedirian V., Charbonneau S., Whitehead V., Collin I., et al. (2005). The Montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699.  https://doi.org/10.1111/j.1532-5415.2005.53221.x.
  36. Ng, K. K., Lo, J. C., Lim, J. K., Chee, M. W., & Zhou, J. (2016). Reduced functional segregation between the default mode network and the executive control network in healthy older adults: A longitudinal study. NeuroImage, 133, 321–330.  https://doi.org/10.1016/j.neuroimage.2016.03.029.CrossRefPubMedGoogle Scholar
  37. O'Mara, S. (2005). The subiculum: What it does, what it might do, and what neuroanatomy has yet to tell us. Journal of Anatomy, 207(3), 271–282.  https://doi.org/10.1111/j.1469-7580.2005.00446.x.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Parihar, V. K., & Limoli, C. L. (2013). Cranial irradiation compromises neuronal architecture in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 110(31), 12822–12827.  https://doi.org/10.1073/pnas.1307301110.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Pospisil, P., Kazda T., Hynkova L., Bulik M., Dobiaskova M., Burkon P., et al. (2017). Post-WBRT cognitive impairment and hippocampal neuronal depletion measured by in vivo metabolic MR spectroscopy: Results of prospective investigational study. Radiotherapy and Oncology, 122(3), 373–379.  https://doi.org/10.1016/j.radonc.2016.12.013.
  40. Puspitasari, A., Koganezawa N., Ishizuka Y., Kojima N., Tanaka N., Nakano T., et al. (2016). X irradiation induces acute cognitive decline via transient synaptic dysfunction. Radiation Research, 185(4), 423–430.  https://doi.org/10.1667/RR14236.1.
  41. Reuter, M., Schmansky, N. J., Rosas, H. D., & Fischl, B. (2012). Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage, 61(4), 1402–1418.  https://doi.org/10.1016/j.neuroimage.2012.02.084.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Santos-Filho, C., de Lima C. M., Foro C. A., de Oliveira M. A., Magalhaes N. G., Guerreiro-Diniz C., et al. (2014). Visuospatial learning and memory in the Cebus apella and microglial morphology in the molecular layer of the dentate gyrus and CA1 lacunosum molecular layer. Journal of Chemical Neuroanatomy, 61-62(176–188.  https://doi.org/10.1016/j.jchemneu.2014.10.001.
  43. Seibert, T. M., Karunamuni R., Bartsch H., Kaifi S., Krishnan A. P., Dalia Y., et al. (2017). Radiation dose-dependent hippocampal atrophy detected with longitudinal volumetric magnetic resonance imaging. International Journal of Radiation Oncology, Biology, Physics, 97(2), 263–269.  https://doi.org/10.1016/j.ijrobp.2016.10.035.
  44. Simo, M., Vaquero L., Ripolles P., Gurtubay-Antolin A., Jove J., Navarro A., et al. (2016). Longitudinal brain changes associated with prophylactic cranial irradiation in lung Cancer. Journal of Thoracic Oncology, 11(4), 475–486.  https://doi.org/10.1016/j.jtho.2015.12.110.
  45. Small, S. A., Schobel, S. A., Buxton, R. B., Witter, M. P., & Barnes, C. A. (2011). A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nature Reviews Neuroscience, 12(10), 585–601.  https://doi.org/10.1038/nrn3085.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Son, Y., Yang, M., Wang, H., & Moon, C. (2015). Hippocampal dysfunctions caused by cranial irradiation: A review of the experimental evidence. Brain, Behavior, and Immunity, 45, 287–296.  https://doi.org/10.1016/j.bbi.2015.01.007.CrossRefPubMedGoogle Scholar
  47. Sun, Y., Yu X. L., Luo W., Lee A. W., Wee J. T., Lee N., et al. (2014). Recommendation for a contouring method and atlas of organs at risk in nasopharyngeal carcinoma patients receiving intensity-modulated radiotherapy. Radiotherapy and Oncology, 110(3), 390–397.  https://doi.org/10.1016/j.radonc.2013.10.035.
  48. Team, R. C. (2014). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
  49. Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., & Jemal, A. (2015). Global cancer statistics, 2012. CA: a Cancer Journal for Clinicians, 65(2), 87–108.  https://doi.org/10.3322/caac.21262.CrossRefGoogle Scholar
  50. Van Leemput, K., Bakkour A., Benner T., Wiggins G., Wald L. L., Augustinack J., et al. (2009). Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI. Hippocampus, 19(6), 549–557.  https://doi.org/10.1002/hipo.20615.
  51. Warrington, J. P., Csiszar A., Johnson D. A., Herman T. S., Ahmad S., Lee Y. W., et al. (2011). Cerebral microvascular rarefaction induced by whole brain radiation is reversible by systemic hypoxia in mice. American Journal of Physiology-Heart and Circulatory Physiology, 300(3), H736-H744.  https://doi.org/10.1152/ajpheart.01024.2010.
  52. Yao, J. J., Yu X. L., Zhang F., Zhang W. J., Zhou G. Q., Tang L. L., et al. (2017). Radiotherapy with neoadjuvant chemotherapy versus concurrent chemoradiotherapy for ascending-type nasopharyngeal carcinoma: A retrospective comparison of toxicity and prognosis. Chinese Journal of Cancer, 36(1), 26.  https://doi.org/10.1186/s40880-017-0195-6.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medical ImagingSun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangzhouPeople’s Republic of China
  2. 2.Department of OncologyThe First Affiliated Hospital of Ganzhou Medical UniversityGanzhouPeople’s Republic of China
  3. 3.Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouPeople’s Republic of China

Personalised recommendations