Advertisement

Language function shows comparable cortical patterns by functional MRI and repetitive nTMS in healthy volunteers

  • Theresa Hauck
  • Monika Probst
  • Claus Zimmer
  • Florian Ringel
  • Bernhard Meyer
  • Afra Wohlschlaeger
  • Sandro M. Krieg
Original Research
  • 68 Downloads

Abstract

In preoperative planning, fMRI and repetitive navigated transcranial magnetic stimulation (rTMS) repeatedly revealed differences in the detected language sites, which can be attributed to tumor-induced oxygenation changes impairing the accuracy of fMRI. We therefore compared the accordance of those techniques in healthy subjects using exactly the same tasks in both investigations. 19 healthy right-handed subjects performed object naming, pseudoword reading, verb generation, and action naming during fMRI at 3 T and rTMS. For rTMS language mapping, we stimulated 46 cortical spots over the left hemisphere; each site was stimulated for three times. Language positive points during rTMS for one, two, or three errors out the three stimulations per spot (1/3, 2/3, 3/3) were exported via DICOM, and compared to the positive fMRI clusters. As a result of this comparison, the best correlation was observed between 3/3 errors and fMRI for pseudoword reading and verb generation with t-values of pu < 0.001, uncorrected for multiple comparisons, on average across the whole rTMS-spot map. We found a close spatial agreement between several rTMS-spots (2/3 and 3/3 errors) and fMRI clusters accentuated in the frontal lobe, followed by the parietal lobe and less in the temporal lobe. Compared to the fMRI clusters, there was a higher congruence for 2/3 and 3/3 errors than for 1/3 errors. Overall, results of language mapping in healthy subjects by fMRI and rTMS correspond well yet depending on the used language task.

Keywords

Action naming Functional MRI Object naming Pseudoword reading Transcranial magnetic stimulation 

Abbreviations

aMTG

Anterior middle temporal gyrus

CPS

Cortical parcellation system

DCS

Direct cortical stimulation

EEG

Electroencephalography

EPI

Echo planar imaging

fMRI

Functional magnetic resonance imaging

GLM

General linear model

ITG

Inferior temporal gyrus

MEG

Magnetoencephalography

NPV

Negative predictive value

nTMS

Navigated transcranial magnetic stimulation

orIFG

Orbital part of the inferior frontal gyrus

PET

Positron emission tomography

polIFG

Polar inferior frontal gyrus

polMFG

Polar middle frontal gyrus

polMTG

Polar middle temporal gyrus

polSFG

Polar superior frontal gyrus

polSTG

Polar superior temporal gyrus

PTI

Picture to trigger interval

RMT

Resting Motor Threshold

rTMS

Repetitive navigated transcranial magnetic stimulation

SEM

Standard error of mean

VAS

Visual analogue scale

Notes

Funding

The study was financed by institutional grants from the Department of Neurosurgery and the Section of Neuroradiology.

Compliance with ethical standards

Conflict of interest

SK, FR, and BM are consultants for Brainlab AG (Munich, Germany). SK is consultant for Nexstim Plc (Helsinki, Finland).

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Alario, F. X., Chainay, H., Lehericy, S., & Cohen, L. (2006). The role of the supplementary motor area (SMA) in word production. Brain Research, 1076(1), 129–143.  https://doi.org/10.1016/j.brainres.2005.11.104.CrossRefPubMedGoogle Scholar
  2. Allendorfer, J. B., Kissela, B. M., Holland, S. K., & Szaflarski, J. P. (2012). Different patterns of language activation in post-stroke aphasia are detected by overt and covert versions of the verb generation fMRI task. Medical Science Monitor, 18(3), CR135–CR137.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aziz-Zadeh, L., Cattaneo, L., Rochat, M., & Rizzolatti, G. (2005). Covert speech arrest induced by rTMS over both motor and nonmotor left hemisphere frontal sites. Journal of Cognitive Neuroscience, 17(6), 928–938.  https://doi.org/10.1162/0898929054021157.CrossRefPubMedGoogle Scholar
  4. Bak, T. H., O'Donovan, D. G., Xuereb, J. H., Boniface, S., & Hodges, J. R. (2001). Selective impairment of verb processing associated with pathological changes in Brodmann areas 44 and 45 in the motor neurone disease-dementia-aphasia syndrome. Brain, 124(Pt 1), 103–120.CrossRefPubMedGoogle Scholar
  5. Barker, A. T., Jalinous, R., & Freeston, I. L. (1985). Non-invasive magnetic stimulation of human motor cortex. Lancet, 1(8437), 1106–1107.CrossRefPubMedGoogle Scholar
  6. Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Sciences, 15(11), 527–536,  https://doi.org/10.1016/j.tics.2011.7001.
  7. Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P. S., Rao, S. M., & Cox, R. W. (1999). Conceptual processing during the conscious resting state. A functional MRI study. Journal of Cognitive Neuroscience, 11(1), 80–95.CrossRefPubMedGoogle Scholar
  8. Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 2767–2796.  https://doi.org/10.1093/cercor/bhp055.CrossRefPubMedGoogle Scholar
  9. Bookheimer, S. (2002). Functional MRI of language: New approaches to understanding the cortical organization of semantic processing. Annual Review of Neuroscience, 25, 151–188.  https://doi.org/10.1146/annurev.neuro.25.112701.142946.CrossRefPubMedGoogle Scholar
  10. Bookheimer, S. (2007). Pre-surgical language mapping with functional magnetic resonance imaging. Neuropsychology Review, 17(2), 145–155.  https://doi.org/10.1007/s11065-007-9026-x.CrossRefPubMedGoogle Scholar
  11. Buckner, R. L., Raichle, M. E., & Petersen, S. E. (1995). Dissociation of human prefrontal cortical areas across different speech production tasks and gender groups. Journal of Neurophysiology, 74(5), 2163–2173.CrossRefPubMedGoogle Scholar
  12. Chang, E. F., Clark, A., Smith, J. S., Polley, M. Y., Chang, S. M., Barbaro, N. M., et al. (2011). Functional mapping-guided resection of low-grade gliomas in eloquent areas of the brain: Improvement of long-term survival. Clinical article. Journal of Neurosurgery, 114(3), 566–573.  https://doi.org/10.3171/2010.6.JNS091246.CrossRefPubMedGoogle Scholar
  13. Corina, D. P., Gibson, E. K., Martin, R., Poliakov, A., Brinkley, J., & Ojemann, G. A. (2005). Dissociation of action and object naming: evidence from cortical stimulation mapping. Human Brain Mapping, 24(1), 1–10.  https://doi.org/10.1002/hbm.20063.CrossRefPubMedGoogle Scholar
  14. Corina, D. P., Loudermilk, B. C., Detwiler, L., Martin, R. F., Brinkley, J. F., & Ojemann, G. (2010). Analysis of naming errors during cortical stimulation mapping: implications for models of language representation. Brain and Language, 115(2), 101–112.  https://doi.org/10.1016/j.bandl.2010.04.001.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Crescentini, C., Shallice, T., & Macaluso, E. (2010). Item retrieval and competition in noun and verb generation: an FMRI study. Journal of Cognitive Neuroscience, 22(6), 1140–1157.  https://doi.org/10.1162/jocn.2009.21255.CrossRefPubMedGoogle Scholar
  16. Crosson, B., Sadek, J. R., Maron, L., Gokcay, D., Mohr, C. M., Auerbach, E. J., et al. (2001). Relative shift in activity from medial to lateral frontal cortex during internally versus externally guided word generation. Journal of Cognitive Neuroscience, 13(2), 272–283.CrossRefPubMedGoogle Scholar
  17. de Zubicaray, G., McMahon, K., Eastburn, M., Pringle, A., & Lorenz, L. (2006). Classic identity negative priming involves accessing semantic representations in the left anterior temporal cortex. Neuroimage, 33(1), 383–390.  https://doi.org/10.1016/j.neuroimage.2006.06.024.CrossRefPubMedGoogle Scholar
  18. Demonet, J. F., Chollet, F., Ramsay, S., Cardebat, D., Nespoulous, J. L., Wise, R., et al. (1992). The anatomy of phonological and semantic processing in normal subjects. Brain, 115(Pt 6), 1753–1768.CrossRefPubMedGoogle Scholar
  19. Epstein, C. M., Lah, J. J., Meador, K., Weissman, J. D., Gaitan, L. E., & Dihenia, B. (1996). Optimum stimulus parameters for lateralized suppression of speech with magnetic brain stimulation. Neurology, 47(6), 1590–1593.CrossRefPubMedGoogle Scholar
  20. Felty, R. A. (2007). Context effects in spoken word recognition of English and German by native and non-native listeners. East Lansing: Michigan State University.Google Scholar
  21. FitzGerald, D. B., Cosgrove, G. R., Ronner, S., Jiang, H., Buchbinder, B. R., Belliveau, J. W., et al. (1997). Location of language in the cortex: A comparison between functional MR imaging and electrocortical stimulation. AJNR. American Journal of Neuroradiology, 18(8), 1529–1539.PubMedGoogle Scholar
  22. Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S., & Turner, R. (1996). Movement-related effects in fMRI time-series. Magnetic Resonance in Medicine, 35(3), 346–355.CrossRefPubMedGoogle Scholar
  23. Gaillard, W. D., Balsamo, L., Xu, B., McKinney, C., Papero, P. H., Weinstein, S., et al. (2004). fMRI language task panel improves determination of language dominance. Neurology, 63(8), 1403–1408.CrossRefPubMedGoogle Scholar
  24. Giussani, C., Roux, F. E., Ojemann, J., Sganzerla, E. P., Pirillo, D., & Papagno, C. (2010). Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies. Neurosurgery, 66(1), 113–120.  https://doi.org/10.1227/01.NEU.0000360392.15450.C9.CrossRefPubMedGoogle Scholar
  25. Gold, B. T., & Buckner, R. L. (2002). Common prefrontal regions coactivate with dissociable posterior regions during controlled semantic and phonological tasks. Neuron, 35(4), 803–812.CrossRefPubMedGoogle Scholar
  26. Haglund, M. M., Berger, M. S., Shamseldin, M., Lettich, E., & Ojemann, G. A. (1994). Cortical localization of temporal lobe language sites in patients with gliomas. Neurosurgery, 34(4), 567–576 discussion 576.PubMedGoogle Scholar
  27. Hagoort, P., Indefrey, P., Brown, C., Herzog, H., Steinmetz, H., & Seitz, R. J. (1999). The neural circuitry involved in the reading of German words and pseudowords: a PET study. Journal of Cognitive Neuroscience, 11(4), 383–398.CrossRefPubMedGoogle Scholar
  28. Hauck, T., Tanigawa, N., Probst, M., Wohlschlaeger, A., Ille, S., Sollmann, N., et al. (2015a). Stimulation frequency determines the distribution of language positive cortical regions during navigated transcranial magnetic brain stimulation. BMC Neuroscience, 16, 5.  https://doi.org/10.1186/s12868-015-0143-9.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hauck, T., Tanigawa, N., Probst, M., Wohlschlaeger, A., Ille, S., Sollmann, N., et al. (2015b). Task type affects location of language-positive cortical regions by repetitive navigated transcranial magnetic stimulation mapping. PLoS One, 10(4), e0125298.  https://doi.org/10.1371/journal.pone.0125298.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hervey-Jumper, S. L., Li, J., Lau, D., Molinaro, A. M., Perry, D. W., Meng, L., et al. (2015). Awake craniotomy to maximize glioma resection: methods and technical nuances over a 27-year period. Journal of Neurosurgery, 123(2), 325–339.  https://doi.org/10.3171/2014.10.JNS141520.CrossRefPubMedGoogle Scholar
  31. Ille, S., Sollmann, N., Hauck, T., Maurer, S., Tanigawa, N., Obermueller, T., et al. (2015a). Impairment of preoperative language mapping by lesion location: a functional magnetic resonance imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation study. Journal of Neurosurgery, 123(2), 314–324.  https://doi.org/10.3171/2014.10.JNS141582.CrossRefPubMedGoogle Scholar
  32. Ille, S., Sollmann, N., Hauck, T., Maurer, S., Tanigawa, N., Obermueller, T., et al. (2015b). Impairment of preoperative language mapping by lesion location: a functional magnetic resonance imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation study. J Neurosurg, 1–11,  https://doi.org/10.3171/2014.10.JNS141582.
  33. Ille, S., Sollmann, N., Hauck, T., Maurer, S., Tanigawa, N., Obermueller, T., et al. (2015c). Combined noninvasive language mapping by navigated transcranial magnetic stimulation and functional MRI and its comparison with direct cortical stimulation. [Comparative Study. Research Support, Non-U.S. Gov't]. Journal of Neurosurgery, 123(1), 212–225.  https://doi.org/10.3171/2014.9.JNS14929.CrossRefPubMedGoogle Scholar
  34. Ille, S., Sollmann, N., Hauck, T., Maurer, S., Tanigawa, N., Obermueller, T., et al. (2015d). Combined noninvasive language mapping by navigated transcranial magnetic stimulation and functional MRI and its comparison with direct cortical stimulation. Journal of Neurosurgery, 1–14,  https://doi.org/10.3171/2014.9.JNS14929.
  35. Ilmoniemi, R. J., Ruohonen, J., & Karhu, J. (1999). Transcranial magnetic stimulation--a new tool for functional imaging of the brain. Critical Reviews in Biomedical Engineering, 27(3–5), 241–284.PubMedGoogle Scholar
  36. Indefrey, P. (2011). The spatial and temporal signatures of word production components: A critical update. Frontiers in Psychology, 2, 255.  https://doi.org/10.3389/fpsyg.2011.00255.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Indefrey, P., & Levelt, W. J. (2004). The spatial and temporal signatures of word production components. Cognition, 92(1–2), 101–144.  https://doi.org/10.1016/j.cognition.2002.06.001.CrossRefPubMedGoogle Scholar
  38. Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17(2), 825–841.CrossRefPubMedGoogle Scholar
  39. Kim, S. G., & Ogawa, S. (2012). Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals. Journal of Cerebral Blood Flow and Metabolism, 32(7), 1188–1206.  https://doi.org/10.1038/jcbfm.2012.23.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kiyosawa, M., Inoue, C., Kawasaki, T., Tokoro, T., Ishii, K., Ohyama, M., et al. (1996). Functional neuroanatomy of visual object naming: a PET study. Graefe's Archive for Clinical and Experimental Ophthalmology, 234(2), 110–115.CrossRefPubMedGoogle Scholar
  41. Kononen, M., Tamsi, N., Saisanen, L., Kemppainen, S., Maatta, S., Julkunen, P., et al. (2015). Non-invasive mapping of bilateral motor speech areas using navigated transcranial magnetic stimulation and functional magnetic resonance imaging. Journal of Neuroscience Methods, 248, 32–40.  https://doi.org/10.1016/j.jneumeth.2015.03.030.CrossRefPubMedGoogle Scholar
  42. Krieg, S. M., Shiban, E., Buchmann, N., Meyer, B., & Ringel, F. (2013a). Presurgical navigated transcranial magnetic brain stimulation for recurrent gliomas in motor eloquent areas. Clinical Neurophysiology, 124(3), 522–527.  https://doi.org/10.1016/j.clinph.2012.08.011.CrossRefPubMedGoogle Scholar
  43. Krieg, S. M., Sollmann, N., Hauck, T., Ille, S., Foerschler, A., Meyer, B., et al. (2013b). Functional language shift to the right hemisphere in patients with language-eloquent brain tumors. PLoS One, 8(9), e75403.  https://doi.org/10.1371/journal.pone.0075403.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Krieg, S. M., Sollmann, N., Hauck, T., Ille, S., Meyer, B., & Ringel, F. (2014a). Repeated mapping of cortical language sites by preoperative navigated transcranial magnetic stimulation compared to repeated intraoperative DCS mapping in awake craniotomy. BMC Neuroscience, 15, 20.  https://doi.org/10.1186/1471-2202-15-20.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Krieg, S. M., Tarapore, P. E., Picht, T., Tanigawa, N., Houde, J., Sollmann, N., et al. (2014b). Optimal timing of pulse onset for language mapping with navigated repetitive transcranial magnetic stimulation. Neuroimage, 100C, 219–236.  https://doi.org/10.1016/j.neuroimage.2014.06.016.CrossRefGoogle Scholar
  46. Krieg, S. M., Sollmann, N., Tanigawa, N., Foerschler, A., Meyer, B., & Ringel, F. (2015). Cortical distribution of speech and language errors investigated by visual object naming and navigated transcranial magnetic stimulation. Brain Structure and Function.  https://doi.org/10.1007/s00429-015-1042-7.
  47. Kuchcinski, G., Mellerio, C., Pallud, J., Dezamis, E., Turc, G., Rigaux-Viode, O., et al. (2015). Three-tesla functional MR language mapping: Comparison with direct cortical stimulation in gliomas. Neurology, 84(6), 560–568.  https://doi.org/10.1212/WNL.0000000000001226.CrossRefPubMedGoogle Scholar
  48. Lioumis, P., Zhdanov, A., Makela, N., Lehtinen, H., Wilenius, J., Neuvonen, T., et al. (2012). A novel approach for documenting naming errors induced by navigated transcranial magnetic stimulation. Journal of Neuroscience Methods, 204(2), 349–354.  https://doi.org/10.1016/j.jneumeth.2011.11.003.CrossRefPubMedGoogle Scholar
  49. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412(6843), 150–157.  https://doi.org/10.1038/35084005.CrossRefPubMedGoogle Scholar
  50. Lubrano, V., Filleron, T., Demonet, J. F., & Roux, F. E. (2014). Anatomical correlates for category-specific naming of objects and actions: a brain stimulation mapping study. Human Brain Mapping, 35(2), 429–443.  https://doi.org/10.1002/hbm.22189.CrossRefPubMedGoogle Scholar
  51. Martin, A., Wiggs, C. L., Ungerleider, L. G., & Haxby, J. V. (1996). Neural correlates of category-specific knowledge. Nature, 379(6566), 649–652.  https://doi.org/10.1038/379649a0.CrossRefPubMedGoogle Scholar
  52. Matzig, S., Druks, J., Masterson, J., & Vigliocco, G. (2009). Noun and verb differences in picture naming: past studies and new evidence. Cortex, 45(6), 738–758.  https://doi.org/10.1016/j.cortex.2008.10.003.CrossRefPubMedGoogle Scholar
  53. Moore, C. J., & Price, C. J. (1999). Three distinct ventral occipitotemporal regions for reading and object naming. Neuroimage, 10(2), 181–192.  https://doi.org/10.1006/nimg.1999.0450.CrossRefPubMedGoogle Scholar
  54. Moseley, R. L., & Pulvermuller, F. (2014). Nouns, verbs, objects, actions, and abstractions: local fMRI activity indexes semantics, not lexical categories. Brain and Language, 132, 28–42.  https://doi.org/10.1016/j.bandl.2014.03.001.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Murtha, S., Chertkow, H., Beauregard, M., & Evans, A. (1999). The neural substrate of picture naming. Journal of Cognitive Neuroscience, 11(4), 399–423.CrossRefPubMedGoogle Scholar
  56. Neggers, S. F., Langerak, T. R., Schutter, D. J., Mandl, R. C., Ramsey, N. F., Lemmens, P. J., et al. (2004). A stereotactic method for image-guided transcranial magnetic stimulation validated with fMRI and motor-evoked potentials. Neuroimage, 21(4), 1805–1817.  https://doi.org/10.1016/j.neuroimage.2003.12.006.CrossRefPubMedGoogle Scholar
  57. Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences of the United States of America, 87(24), 9868–9872.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Ojemann, J. G., Ojemann, G. A., & Lettich, E. (2002). Cortical stimulation mapping of language cortex by using a verb generation task: effects of learning and comparison to mapping based on object naming. Journal of Neurosurgery, 97(1), 33–38.  https://doi.org/10.3171/jns.2002.97.1.0033.CrossRefPubMedGoogle Scholar
  59. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.CrossRefPubMedGoogle Scholar
  60. Pascual-Leone, A., Gates, J. R., & Dhuna, A. (1991). Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation. Neurology, 41(5), 697–702.CrossRefPubMedGoogle Scholar
  61. Pascual-Leone, A., Bartres-Faz, D., & Keenan, J. P. (1999). Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction of 'virtual lesions'. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 354(1387), 1229–1238.  https://doi.org/10.1098/rstb.1999.0476.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Paus, T. (1999). Imaging the brain before, during, and after transcranial magnetic stimulation. Neuropsychologia, 37(2), 219–224.CrossRefPubMedGoogle Scholar
  63. Pei, X., Leuthardt, E. C., Gaona, C. M., Brunner, P., Wolpaw, J. R., & Schalk, G. (2011). Spatiotemporal dynamics of electrocorticographic high gamma activity during overt and covert word repetition. Neuroimage, 54(4), 2960–2972.  https://doi.org/10.1016/j.neuroimage.2010.10.029.CrossRefPubMedGoogle Scholar
  64. Perani, D., Cappa, S. F., Schnur, T., Tettamanti, M., Collina, S., Rosa, M. M., et al. (1999). The neural correlates of verb and noun processing. A PET Study, 122(12), 2337–2344.  https://doi.org/10.1093/brain/122.12.2337.CrossRefGoogle Scholar
  65. Peschke, C., Ziegler, W., Kappes, J., & Baumgaertner, A. (2009). Auditory-motor integration during fast repetition: the neuronal correlates of shadowing. Neuroimage, 47(1), 392–402.  https://doi.org/10.1016/j.neuroimage.2009.03.061.CrossRefPubMedGoogle Scholar
  66. Petrovich Brennan, N. M., Whalen, S., de Morales Branco, D., O'Shea, J. P., Norton, I. H., & Golby, A. J. (2007). Object naming is a more sensitive measure of speech localization than number counting: converging evidence from direct cortical stimulation and fMRI. Neuroimage, 37(Suppl 1), S100–S108.  https://doi.org/10.1016/j.neuroimage.2007.04.052.CrossRefPubMedGoogle Scholar
  67. Picht, T., Mularski, S., Kuehn, B., Vajkoczy, P., Kombos, T., & Suess, O. (2009). Navigated transcranial magnetic stimulation for preoperative functional diagnostics in brain tumor surgery. Neurosurgery, 65(6 Suppl), 93–98.PubMedGoogle Scholar
  68. Picht, T., Schulz, J., Hanna, M., Schmidt, S., Suess, O., & Vajkoczy, P. (2012). Assessment of the influence of navigated transcranial magnetic stimulation on surgical planning for tumors in or near the motor cortex. Neurosurgery, 70(5), 1248–1256; discussion 1256-1247.  https://doi.org/10.1227/NEU.0b013e318243881e.CrossRefPubMedGoogle Scholar
  69. Picht, T., Krieg, S. M., Sollmann, N., Rosler, J., Niraula, B., Neuvonen, T., et al. (2013). A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during awake surgery. Neurosurgery, 72(5), 808–819.  https://doi.org/10.1227/NEU.0b013e3182889e01.CrossRefPubMedGoogle Scholar
  70. Poldrack, R. A., Wagner, A. D., Prull, M. W., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1999). Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. Neuroimage, 10(1), 15–35.  https://doi.org/10.1006/nimg.1999.0441.CrossRefPubMedGoogle Scholar
  71. Price, C. J. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage, 62(2), 816–847.  https://doi.org/10.1016/j.neuroimage.2012.04.062.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Price, C. J., Wise, R. J., Warburton, E. A., Moore, C. J., Howard, D., Patterson, K., et al. (1996). Hearing and saying. The functional neuro-anatomy of auditory word processing. Brain, 119(Pt 3), 919–931.CrossRefPubMedGoogle Scholar
  73. Riecker, A., Ackermann, H., Wildgruber, D., Dogil, G., & Grodd, W. (2000). Opposite hemispheric lateralization effects during speaking and singing at motor cortex, insula and cerebellum. Neuroreport, 11(9), 1997–2000.CrossRefPubMedGoogle Scholar
  74. Rosler, J., Niraula, B., Strack, V., Zdunczyk, A., Schilt, S., Savolainen, P., et al. (2014). Language mapping in healthy volunteers and brain tumor patients with a novel navigated TMS system: evidence of tumor-induced plasticity. Clinical Neurophysiology, 125(3), 526–536.  https://doi.org/10.1016/j.clinph.2013.08.015.CrossRefPubMedGoogle Scholar
  75. Rossi, S., Hallett, M., Rossini, P. M., & Pascual-Leone, A. (2009). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical Neurophysiology, 120(12), 2008–2039.  https://doi.org/10.1016/j.clinph.2009.08.016.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Roux, F. E., Boulanouar, K., Lotterie, J. A., Mejdoubi, M., LeSage, J. P., & Berry, I. (2003). Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation. Neurosurgery, 52(6), 1335–1345 discussion 1345-1337.CrossRefPubMedGoogle Scholar
  77. Ruohonen, J., & Ilmoniemi, R. J. (1999). Modeling of the stimulating field generation in TMS. Electroencephalography and Clinical Neurophysiology. Supplement, 51, 30–40.PubMedGoogle Scholar
  78. Ruohonen, J., & Karhu, J. (2010). Navigated transcranial magnetic stimulation. Neurophysiologie Clinique, 40(1), 7–17.CrossRefPubMedGoogle Scholar
  79. Saccuman, M. C., Cappa, S. F., Bates, E. A., Arevalo, A., Della Rosa, P., Danna, M., et al. (2006). The impact of semantic reference on word class: an fMRI study of action and object naming. Neuroimage, 32(4), 1865–1878.  https://doi.org/10.1016/j.neuroimage.2006.04.179.CrossRefPubMedGoogle Scholar
  80. Sack, A. T., Cohen Kadosh, R., Schuhmann, T., Moerel, M., Walsh, V., & Goebel, R. (2009). Optimizing functional accuracy of TMS in cognitive studies: A comparison of methods. Journal of Cognitive Neuroscience, 21(2), 207–221.  https://doi.org/10.1162/jocn.2009.21126.CrossRefPubMedGoogle Scholar
  81. Salmelin, R., Helenius, P., & Service, E. (2000). Neurophysiology of fluent and impaired reading: a magnetoencephalographic approach. Journal of Clinical Neurophysiology, 17(2), 163–174.CrossRefPubMedGoogle Scholar
  82. Sanai, N., & Berger, M. S. (2008). Mapping the horizon: techniques to optimize tumor resection before and during surgery. Clinical Neurosurgery, 55, 14–19.PubMedGoogle Scholar
  83. Shapiro, K. A., Moo, L. R., & Caramazza, A. (2006). Cortical signatures of noun and verb production. Proceedings of the National Academy of Sciences of the United States of America, 103(5), 1644–1649.  https://doi.org/10.1073/pnas.0504142103.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Shaywitz, S. E., & Shaywitz, B. A. (2005). Dyslexia (specific reading disability). Biological Psychiatry, 57(11), 1301–1309.  https://doi.org/10.1016/j.biopsych.2005.01.043.CrossRefPubMedGoogle Scholar
  85. Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R., Mencl, W. E., Fulbright, R. K., Skudlarski, P., et al. (2002). Disruption of posterior brain systems for reading in children with developmental dyslexia. Biological Psychiatry, 52(2), 101–110.CrossRefPubMedGoogle Scholar
  86. Shepherd, F. A., Domerg, C., Hainaut, P., Janne, P. A., Pignon, J. P., Graziano, S., et al. (2013). Pooled analysis of the prognostic and predictive effects of KRAS mutation status and KRAS mutation subtype in early-stage resected non-small-cell lung cancer in four trials of adjuvant chemotherapy. Journal of Clinical Oncology, 31(17), 2173–2181.  https://doi.org/10.1200/JCO.2012.48.1390.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Simos, P. G., Breier, J. I., Fletcher, J. M., Foorman, B. R., Castillo, E. M., & Papanicolaou, A. C. (2002). Brain mechanisms for reading words and pseudowords: an integrated approach. Cerebral Cortex, 12(3), 297–305.CrossRefPubMedGoogle Scholar
  88. Siri, S., Tettamanti, M., Cappa, S. F., Della Rosa, P., Saccuman, C., Scifo, P., et al. (2008). The neural substrate of naming events: effects of processing demands but not of grammatical class. Cerebral Cortex, 18(1), 171–177.  https://doi.org/10.1093/cercor/bhm043.CrossRefPubMedGoogle Scholar
  89. Snodgrass, J. G., & Vanderwart, M. (1980). A standardized set of 260 pictures: Norms for name agreement, image agreement, familiarity, and visual complexity. Journal of Experimental Psychology: Human Learning and Memory, 6(2), 174–215.Google Scholar
  90. Sollmann, N., Hauck, T., Hapfelmeier, A., Meyer, B., Ringel, F., & Krieg, S. M. (2013a). Intra- and interobserver variability of language mapping by navigated transcranial magnetic brain stimulation. BMC Neuroscience, 14, 150.  https://doi.org/10.1186/1471-2202-14-150.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Sollmann, N., Picht, T., Makela, J. P., Meyer, B., Ringel, F., & Krieg, S. M. (2013b). Navigated transcranial magnetic stimulation for preoperative language mapping in a patient with a left frontoopercular glioblastoma. Journal of Neurosurgery, 118(1), 175–179.  https://doi.org/10.3171/2012.9.JNS121053.CrossRefPubMedGoogle Scholar
  92. Sollmann, N., Tanigawa, N., Ringel, F., Zimmer, C., Meyer, B., & Krieg, S. M. (2014). Language and its right-hemispheric distribution in healthy brains: An investigation by repetitive transcranial magnetic stimulation. Neuroimage, 102(Pt 2), 776–788.  https://doi.org/10.1016/j.neuroimage.2014.09.002.CrossRefPubMedGoogle Scholar
  93. Sollmann, N., Ille, S., Obermueller, T., Negwer, C., Ringel, F., Meyer, B., et al. (2015a). The impact of repetitive navigated transcranial magnetic stimulation coil positioning and stimulation parameters on human language function. European Journal of Medical Research, 20, 47.  https://doi.org/10.1186/s40001-015-0138-0.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Sollmann, N., Tanigawa, N., Tussis, L., Hauck, T., Ille, S., Maurer, S., et al. (2015b). Cortical regions involved in semantic processing investigated by repetitive navigated transcranial magnetic stimulation and object naming. Neuropsychologia, 70, 185–195.  https://doi.org/10.1016/j.neuropsychologia.2015.02.035.CrossRefPubMedGoogle Scholar
  95. Stark, C. E., & Squire, L. R. (2001). When zero is not zero: the problem of ambiguous baseline conditions in fMRI. Proceedings of the National Academy of Sciences of the United States of America, 98(22), 12760–12766.  https://doi.org/10.1073/pnas.221462998.CrossRefPubMedPubMedCentralGoogle Scholar
  96. Tarapore, P. E., Tate, M. C., Findlay, A. M., Honma, S. M., Mizuiri, D., Berger, M. S., et al. (2012). Preoperative multimodal motor mapping: a comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. Journal of Neurosurgery, 117(2), 354–362.  https://doi.org/10.3171/2012.5.JNS112124.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Tarapore, P. E., Findlay, A. M., Honma, S. M., Mizuiri, D., Houde, J. F., Berger, M. S., et al. (2013). Language mapping with navigated repetitive TMS: proof of technique and validation. Neuroimage, 82, 260–272.  https://doi.org/10.1016/j.neuroimage.2013.05.018.CrossRefPubMedGoogle Scholar
  98. Taylor, J. S., Rastle, K., & Davis, M. H. (2013). Can cognitive models explain brain activation during word and pseudoword reading? A meta-analysis of 36 neuroimaging studies. Psychological Bulletin, 139(4), 766–791.  https://doi.org/10.1037/a0030266.CrossRefPubMedGoogle Scholar
  99. Tsapkini, K., Frangakis, C. E., & Hillis, A. E. (2011). The function of the left anterior temporal pole: evidence from acute stroke and infarct volume. Brain, 134(Pt 10), 3094–3105.  https://doi.org/10.1093/brain/awr050.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Van Westen, D., Skagerberg, G., Olsrud, J., Fransson, P., & Larsson, E. M. (2005). Functional magnetic resonance imaging at 3T as a clinical tool in patients with intracranial tumors. Acta Radiologica, 46(6), 599–609.CrossRefPubMedGoogle Scholar
  101. Vigliocco, G., Vinson, D. P., Druks, J., Barber, H., & Cappa, S. F. (2011). Nouns and verbs in the brain: a review of behavioural, electrophysiological, neuropsychological and imaging studies. Neuroscience and Biobehavioral Reviews, 35(3), 407–426.  https://doi.org/10.1016/j.neubiorev.2010.04.007.CrossRefPubMedGoogle Scholar
  102. Viswanathan, A., & Freeman, R. D. (2007). Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity. Nature Neuroscience, 10(10), 1308–1312.  https://doi.org/10.1038/nn1977.CrossRefPubMedGoogle Scholar
  103. Wassermann, E. M., Blaxton, T. A., Hoffman, E. A., Berry, C. D., Oletsky, H., Pascual-Leone, A., et al. (1999). Repetitive transcranial magnetic stimulation of the dominant hemisphere can disrupt visual naming in temporal lobe epilepsy patients. Neuropsychologia, 37(5), 537–544.CrossRefPubMedGoogle Scholar
  104. Wise, R., Chollet, F., Hadar, U., Friston, K., Hoffner, E., & Frackowiak, R. (1991). Distribution of cortical neural networks involved in word comprehension and word retrieval. Brain, 114(Pt 4), 1803–1817.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Neurosurgery, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
  2. 2.Section of Neuroradiology, Department of Radiology, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany

Personalised recommendations