Advertisement

Early adolescent brain markers of late adolescent academic functioning

  • Alejandro Daniel Meruelo
  • Joanna Jacobus
  • Erick Idy
  • Tam Nguyen-Louie
  • Gregory Brown
  • Susan Frances Tapert
Original Research

Abstract

Academic performance in adolescence strongly influences adult prospects. Intelligence quotient (IQ) has historically been considered a strong predictor of academic performance. Less objectively explored have been morphometric features. We analyzed brain MRI morphometry metrics in early adolescence (age 12–14 years) as quantitative predictors of academic performance over high school using a naïve Bayesian classifier approach with n = 170 subjects. Based on the mean GPA, subjects were divided into high (GPA ≥3.54; n = 87) and low (GPA <3.54; n = 83) academic performers. Covariance analysis was performed to look at the influence of subject demographics. We examined predictive features from the 343 available regions (surface areas, cortical thickness, and subcortical volumes) and applied 4 algorithms for selection and reduction of attributes using Weka. Cortical thickness measures performed better than surface areas or subcortical volumes as predictors of academic performance. We identified 15 cortical thickness regions most predictive of academic performance, three of which have not been described in the literature predictive of academic performance. These were in the left hemisphere fusiform, bilateral insula, and left hemisphere paracentral regions. Prediction had a sensitivity of 0.65 and specificity of 0.73 with independent validation. Follow-up independent t-test analyses between high and low academic achievers on 10 of 15 regions showed between-group significance at the p < 0.05 level. High achievers demonstrated thicker cortices than low achievers. These newly identified regions may help pinpoint new targets for further study in understanding the developing adolescent brain in the classroom setting.

Keywords

naïve Bayesian classifier Academic performance Adolescence Magnetic resonance imaging Cortical thickness 

Notes

Acknowledgements

This work was made possible by the National Institute of Mental Health grant R25 MH101072 and the National Institute on Alcohol Abuse and Alcoholism grant R01 AA013419-14S1 that support Research Track Resident Alejandro Meruelo, MD, PhD. Data were collected through the Youth at Risk (YAR) project by means of research grant from the National Institute on Alcohol Abuse and Alcoholism R01 AA013419 (PI: Tapert).

Compliance with ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by the UCSD under the UCSD Human Research Protections Program (Project #090269).

Informed consent

Informed consent was obtained from the parents/guardians/LAR for all participants included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11682_2018_9912_MOESM1_ESM.docx (38 kb)
Supplementary Table 1 (DOCX 37 kb)
11682_2018_9912_MOESM2_ESM.docx (36 kb)
Supplementary Table 2 (DOCX 35 kb)
11682_2018_9912_MOESM3_ESM.docx (35 kb)
Supplementary Table 3 (DOCX 34 kb)

References

  1. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: American Psychiatric Publishing.CrossRefGoogle Scholar
  2. Beck, A. T., Steer, R. A., & Carbin, M. G. (1988). Psychometric properties of the Beck depression inventory: Twenty-five years of evaluation. Clinical Psychology Review, 8(1), 77–100.  https://doi.org/10.1016/0272-7358(88)90050-5.CrossRefGoogle Scholar
  3. Berger, A., Kofman, O., Livneh, U., & Henik, A. (2007). Multidisciplinary perspectives on attention and the development of self-regulation. Progress in Neurobiology, 82(5), 256–286.  https://doi.org/10.1016/j.pneurobio.2007.06.004.CrossRefPubMedGoogle Scholar
  4. Bird, C. M., & Burgess, N. (2008). The Hippocampus and memory: Insights from spatial processing. Nature Reviews. Neuroscience, 9(3), 182–194.  https://doi.org/10.1038/nrn2335.CrossRefPubMedGoogle Scholar
  5. Brown, S. A., Myers, M. G., Lippke, L., Tapert, S. F., Stewart, D. G., & Vik, P. W. (1998). Psychometric evaluation of the customary drinking and drug use record (CDDR): A measure of adolescent alcohol and drug involvement. Journal of Studies on Alcohol, 59(4), 427–438.  https://doi.org/10.15288/jsa.1998.59.427.CrossRefPubMedGoogle Scholar
  6. Cardinale, F., Chinnici, G., Bramerio, M., Mai, R., Sartori, I., Cossu, M., et al. (2014). Validation of freesurfer-estimated brain cortical thickness: comparison with histologic measurements. Neuroinformatics, 12(4), 535–542.  https://doi.org/10.1007/s12021-014-9229-2.CrossRefPubMedGoogle Scholar
  7. Clarkson, M. J., Cardoso, M. J., Ridgway, G. R., Modat, M., Leung, K. K., Rohrer, J. D., et al. (2011). A comparison of voxel and surface based cortical thickness estimation methods. NeuroImage, 57(3), 856–865.  https://doi.org/10.1016/j.neuroimage.2011.05.053.CrossRefPubMedGoogle Scholar
  8. Coyle, T., Snyder A., Pillow D., Kochunov P. (2011) SAT Predicts GPA Better for High Ability Subjects: Implications for Spearman’s Law of Diminishing Returns. Personality and Individual Differences, 50(4), 470–74.  https://doi.org/10.1016/j.paid.2010.11.009.
  9. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage, 9(2), 179–194.  https://doi.org/10.1006/nimg.1998.0395.CrossRefPubMedGoogle Scholar
  10. Devlin, J. T., Jamison, H. L., Gonnerman, L. M., & Matthews, P. M. (2006). The role of the posterior fusiform gyrus in reading. Journal of Cognitive Neuroscience, 18(6), 911–922.  https://doi.org/10.1162/jocn.2006.18.6.911.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Domingos, P., & Pazzani, M. (1997). On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29(2–3), 103–130.  https://doi.org/10.1023/A:1007413511361.CrossRefGoogle Scholar
  12. Douglass, S., Hsu, S.-W., Cokus, S., Goldberg, R. B., Harada, J. J., & Pellegrini, M. (2016). A Naïve Bayesian classifier for identifying plant microRNAs. The Plant Journal: For Cell and Molecular Biology, 86(6), 481–492.  https://doi.org/10.1111/tpj.13180.CrossRefGoogle Scholar
  13. Fischl, B., & Dale, A. M. (2000) Measuring the Thickness of the Human Cerebral Cortex from Magnetic Resonance Images. Proceedings of the National Academy of Sciences of the United States of America 97(20), 11050–55.  https://doi.org/10.1073/pnas.200033797.
  14. Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis: II: Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9(2), 195–207.  https://doi.org/10.1006/nimg.1998.0396.CrossRefPubMedGoogle Scholar
  15. Frey, M. C., & Detterman, D. K. (2016). Scholastic assessment or g? The relationship between the scholastic assessment test and general cognitive ability. Psychological Science, 15(6), 373–378. https://doi.org/10.1111/j.0956-7976.2004.00687.x.CrossRefGoogle Scholar
  16. Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical models. 1 edition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  17. Geng, H., Tao, L., Lin, X., Liu, Y., & Yan, F. (2015). Prediction of protein-protein interaction sites based on naive Bayes classifier. Biochemistry Research International, 2015, 978193.  https://doi.org/10.1155/2015/978193.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: An update. SIGKDD Explor. Newsl., 11(1), 10–18.  https://doi.org/10.1145/1656274.1656278.CrossRefGoogle Scholar
  19. Hargreaves, E. L., Rao, G., Lee, I., & Knierim, J. J. (2005). Major dissociation between medial and lateral entorhinal input to dorsal Hippocampus. Science (New York, N.Y.), 308(5729), 1792–1794.  https://doi.org/10.1126/science.1110449.CrossRefGoogle Scholar
  20. Ishai, A., Ungerleider, L. G., Martin, A., Schouten, J. L., & Haxby, J. V. (1999). Distributed representation of objects in the human ventral visual pathway. Proceedings of the National Academy of Sciences of the United States of America, 96(16), 9379–9384.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Iscan, Z., Jin, T. B., Kendrick, A., Szeglin, B., Lu, H., Trivedi, M., et al. (2015). Test-retest reliability of freesurfer measurements within and between sites: effects of visual approval process. Human Brain Mapping, 36(9), 3472–3485.  https://doi.org/10.1002/hbm.22856.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jacobus, J., Goldenberg, D., Wierenga, C. E., Tolentino, N. J., Liu, T. T., & Tapert, S. F. (2012). Altered cerebral blood flow and neurocognitive correlates in adolescent Cannabis users. Psychopharmacology, 222(4), 675–684.  https://doi.org/10.1007/s00213-012-2674-4.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jacobus, J., Squeglia, L. M., Sorg, S. F., Nguyen-Louie, T. T., & Tapert, S. F. (2014). Cortical thickness and Neurocognition in adolescent marijuana and alcohol users following 28 days of monitored abstinence. Journal of Studies on Alcohol and Drugs, 75(5), 729–743.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jacobus, J., Squeglia, L. M., Meruelo, A. D., Castro, N., Brumback, T., Giedd, J. N., & Tapert, S. F. (2015). Cortical thickness in adolescent marijuana and alcohol users: A three-year prospective study from adolescence to young adulthood. Developmental Cognitive Neuroscience, Substance Use and the Adolescent Brain: Developmental Impacts, Interventions, and Longitudinal Outcomes, 16(December), 101–109.  https://doi.org/10.1016/j.dcn.2015.04.006.CrossRefGoogle Scholar
  25. Jung, R. E., & Haier, R. J. (2007). The Parieto-frontal integration theory (P-FIT) of intelligence: Converging neuroimaging evidence. The Behavioral and Brain Sciences, 30(2), 135–154-187.  https://doi.org/10.1017/S0140525X07001185.CrossRefPubMedGoogle Scholar
  26. Kanwisher, N., & Yovel, G. (2006). The fusiform face area: A cortical region specialized for the perception of faces. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1476), 2109–2128.  https://doi.org/10.1098/rstb.2006.1934.CrossRefGoogle Scholar
  27. Karama, S., Colom, R., Johnson, W., Deary, I. J., Haier, R., Waber, D. P., Lepage, C., Ganjavi, H., Jung, R., & Evans, A. C. (2011). Cortical thickness correlates of specific cognitive performance accounted for by the general factor of intelligence in healthy children aged 6 to 18. NeuroImage, 55(4), 1443–1453.  https://doi.org/10.1016/j.neuroimage.2011.01.016.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kéri, S. (2008). Interactive memory systems and category learning in schizophrenia. Neuroscience and Biobehavioral Reviews, 32(2), 206–218.  https://doi.org/10.1016/j.neubiorev.2007.07.003.CrossRefPubMedGoogle Scholar
  29. Kohavi, Ron. 1995. “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection.” In Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2, 1137–1143. IJCAI’95. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. http://dl.acm.org/citation.cfm?id=1643031.1643047.
  30. Kruse, A. J. (2016). Cultural bias in testing: a review of literature and implications for music education. Update: Applications of Research in Music Education, 35(1), 23–31.  https://doi.org/10.1177/8755123315576212.CrossRefGoogle Scholar
  31. Kuncel, N. R., Credé, M., & Thomas, L. L. (2016). The validity of self-reported grade point averages, class ranks, and test scores: a meta-analysis and review of the literature. Review of Educational Research, 75(1), 63–82.  https://doi.org/10.3102/00346543075001063.CrossRefGoogle Scholar
  32. Leung, P. W. L., Lucas, C. P., Hung, S.-f., Kwong, S.-l., Tang, C.-p., Lee, C.-c., Ho, T.-p., Lieh-Mak, F., & Shaffer, D. (2005). The test-retest reliability and screening efficiency of DISC predictive scales-version 4.32 (DPS-4.32) with Chinese children/youths. European Child & Adolescent Psychiatry, 14(8), 461–465.  https://doi.org/10.1007/s00787-005-0503-6.CrossRefGoogle Scholar
  33. Lucas, C. P., Zhang, H., Fisher, P. W., Shaffer, D., Regier, D. A., Narrow, W. E., Bourdon, K., et al. (2001). The DISC predictive scales (DPS): Efficiently screening for diagnoses. Journal of the American Academy of Child & Adolescent Psychiatry, 40(4), 443–449.  https://doi.org/10.1097/00004583-200104000-00013.CrossRefGoogle Scholar
  34. Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure & Function, 214(5–6), 655–667.  https://doi.org/10.1007/s00429-010-0262-0.CrossRefGoogle Scholar
  35. Meruelo, A. D., Samish, I., & Bowie, J. U. (2011). TMKink: A method to predict transmembrane Helix kinks. Protein Science: A Publication of the Protein Society, 20(7), 1256–1264.  https://doi.org/10.1002/pro.653.CrossRefGoogle Scholar
  36. Murray, E. A. (2007). The amygdala, reward and emotion. Trends in Cognitive Sciences, 11(11), 489–497.  https://doi.org/10.1016/j.tics.2007.08.013.CrossRefPubMedGoogle Scholar
  37. Peelen, M. V., & Downing, P. E. (2005). Selectivity for the human body in the fusiform gyrus. Journal of Neurophysiology, 93(1), 603–608.  https://doi.org/10.1152/jn.00513.2004.CrossRefPubMedGoogle Scholar
  38. Posner, M. I., Rothbart, M. K., Sheese, B. E., & Tang, Y. (2007). The anterior cingulate gyrus and the mechanism of self-regulation. Cognitive, Affective & Behavioral Neuroscience, 7(4), 391–395.CrossRefGoogle Scholar
  39. Redcay, E. (2008). The superior temporal sulcus performs a common function for social and speech perception: Implications for the emergence of autism. Neuroscience and Biobehavioral Reviews, 32(1), 123–142.  https://doi.org/10.1016/j.neubiorev.2007.06.004.CrossRefPubMedGoogle Scholar
  40. Rice, J. P., Reich, T., Bucholz, K. K., Neuman, R. J., Fishman, R., Rochberg, N., Hesselbrock, V. M., Nurnberger, J. I., Schuckit, M. A., & Begleiter, H. (1995). Comparison of direct interview and family history diagnoses of alcohol dependence. Alcoholism, Clinical and Experimental Research, 19(4), 1018–1023.CrossRefPubMedGoogle Scholar
  41. Sandi, C., & Pinelo-Nava, M. T. (2007). Stress and memory: Behavioral effects and neurobiological mechanisms. Neural Plasticity, 2007, 78970.  https://doi.org/10.1155/2007/78970.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Schnack, H. G., van Haren, N. E. M., Brouwer, R. M., Evans, A., Durston, S., Boomsma, D. I., Kahn, R. S., & Pol, H. E. H. (2015). Changes in thickness and surface area of the human cortex and their relationship with intelligence. Cerebral Cortex (New York, N.Y.: 1991), 25(6), 1608–1617.  https://doi.org/10.1093/cercor/bht357.CrossRefGoogle Scholar
  43. Shaffer, D., Fisher, P., Dulcan, M. K., Davies, M., Piacentini, J., Schwab-Stone, M. E., Lahey, B. B., et al. (1996). The NIMH diagnostic interview schedule for children version 2.3 (DISC-2.3): Description, acceptability, prevalence rates, and performance in the MECA study. Journal of the American Academy of Child & Adolescent Psychiatry, 35(7), 865–877.  https://doi.org/10.1097/00004583-199607000-00012.CrossRefGoogle Scholar
  44. Shaw, P. (2007). Intelligence and the developing human brain. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 29(10), 962–973.  https://doi.org/10.1002/bies.20641.CrossRefGoogle Scholar
  45. Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., Evans, A., Rapoport, J., & Giedd, J. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440(7084), 676–679.  https://doi.org/10.1038/nature04513.CrossRefPubMedGoogle Scholar
  46. Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., Greenstein, D., et al. (2008). Neurodevelopmental trajectories of the human cerebral cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(14), 3586–3594.  https://doi.org/10.1523/JNEUROSCI.5309-07.2008.CrossRefGoogle Scholar
  47. Shohamy, D., Myers, C. E., Kalanithi, J., & Gluck, M. A. (2008). Basal ganglia and dopamine contributions to probabilistic category learning. Neuroscience and Biobehavioral Reviews, 32(2), 219–236.  https://doi.org/10.1016/j.neubiorev.2007.07.008.CrossRefPubMedGoogle Scholar
  48. Spasojević, G., Malobabic, S., Pilipović-Spasojević, O., Djukić-Macut, N., & Maliković, A. (2013). Morphology and digitally aided morphometry of the human paracentral lobule. Folia Morphologica, 72(1), 10–16.CrossRefPubMedGoogle Scholar
  49. Spielberger, C. D., Gorsuch, R. L., Lushene, R., Vagg, P. R., & Jacobs, G. A. (1983). Manual for the state-trait anxiety inventory. Palo Alto: Consulting Psychologists Press.Google Scholar
  50. Tanji, J., Shima, K., & Mushiake, H. (2007). Concept-based behavioral planning and the lateral prefrontal cortex. Trends in Cognitive Sciences, 11(12), 528–534.  https://doi.org/10.1016/j.tics.2007.09.007.CrossRefPubMedGoogle Scholar
  51. Tian, X. W., & Lim, J. S. (2015). Interactive naive Bayesian network: A new approach of constructing gene-gene interaction network for Cancer classification. Bio-medical Materials and Engineering, 26(Suppl 1), S1929–S1936.  https://doi.org/10.3233/BME-151495.CrossRefPubMedGoogle Scholar
  52. Trippa, L., Waldron, L., Huttenhower, C., & Parmigiani, G. (2015). Bayesian nonparametric cross-study validation of prediction methods. Ann. Appl. Stat., 9(1), 402–428.  https://doi.org/10.1214/14-AOAS798.CrossRefGoogle Scholar
  53. Zhang, H. (2005). Exploring conditions for the optimality of Naïve Bayes. International Journal of Pattern Recognition and Artificial Intelligence, 19(2), 183–198.  https://doi.org/10.1142/S0218001405003983.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PsychiatryUniversity of California San DiegoLa JollaUSA
  2. 2.San Diego State University/University of California San Diego Joint Doctoral Program in Clinical PsychologySan DiegoUSA
  3. 3.VA San Diego Healthcare SystemLa JollaUSA

Personalised recommendations