Brain Imaging and Behavior

, Volume 13, Issue 4, pp 953–962 | Cite as

12-h abstinence-induced functional connectivity density changes and craving in young smokers: a resting-state study

  • Shuzhi Zhao
  • Yangding LiEmail author
  • Min Li
  • Ruonan Wang
  • Yanzhi Bi
  • Yajuan Zhang
  • Xiaoqi Lu
  • Dahua Yu
  • Likun YangEmail author
  • Kai YuanEmail author
Original Research


Studying the neural correlates of craving to smoke is of great importance to improve treatment outcomes in smoking addiction. According to previous studies, the critical roles of striatum and frontal brain regions had been revealed in addiction. However, few studies focused on the hub of brain regions in the 12 h abstinence induced craving in young smokers. Thirty-one young male smokers were enrolled in the present study. A within-subject experiment design was carried out to compare functional connectivity density between 12-h smoking abstinence and smoking satiety conditions during resting state in young adult smokers by using functional connectivity density mapping (FCDM). Then, the functional connectivity density changes during smoking abstinence versus satiety were further used to examine correlations with abstinence-induced changes in subjective craving. We found young adult smokers in abstinence state (vs satiety) had higher local functional connectivity density (lFCD) and global functional connectivity density (gFCD) in brain regions including striatal subregions (i.e., bilateral caudate and putamen), frontal regions (i.e., anterior cingulate cortex (ACC) and orbital frontal cortex (OFC)) and bilateral insula. We also found higher lFCD during smoking abstinence (vs satiety) in bilateral thalamus. Additionally, the lFCD changes of the left ACC, bilateral caudate and right OFC were positively correlated with the changes in craving induced by abstinence (i.e., abstinence minus satiety) in young adult smokers. The present findings improve the understanding of the effects of acute smoking abstinence on the hubs of brain gray matter in the abstinence-induces craving and may contribute new insights into the neural mechanism of abstinence-induced craving in young smokers in smoking addiction.


Resting state Functional connectivity density mapping (FCDM) Abstinence-induced craving Young adult smokers 



This paper is supported by the National Natural Science Foundation of China under Grant Nos. 81701780, 81571751, 81571753, 61502376, 81401478, 81401488, 81470816, 81471737, 61573270, 61363009, and 61672177, the Fundamental Research Funds for the Central Universities under Grant Nos. JBG151207 and JB161201, the Natural Science Foundation of Inner Mongolia under Grant Nos. 2014BS0610, the Innovation Fund Project of Inner Mongolia University of Science and Technology under Grant No. 2015QNGG03, the China Key Research Program under Grant No. 2016YFB1000905, the Guangxi Natural Science Foundation under Grant Nos. 2017GXNSFBA198221, the PhD research startup foundation of Guangxi Normal University under Grant No. 2017BQ017, the Guangxi Collaborative Innovation Center of Multi-Source Information Integration and Intelligent Processing, the Project of Guangxi Science and Technology (GuiKeAD17195062).

Compliance with ethical standards

Informed consent

Informed consent was obtained from all individual participants included in the study.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Addicott, M. A., Froeliger, B., Kozink, R. V., Van Wert, D. M., Westman, E. C., Rose, J. E., & McClernon, F. J. (2014). Nicotine and non-nicotine smoking factors differentially modulate craving, withdrawal and cerebral blood flow as measured with arterial spin labeling. Neuropsychopharmacology, 39, 2750.CrossRefGoogle Scholar
  2. Addicott, M. A., Sweitzer, M. M., Froeliger, B., Rose, J. E., & McLennan, F. J. (2015). Increased Functional Connectivity in an Insula-Based Network is Associated with Improved Smoking Cessation Outcomes. Neuropsychopharmacology Official Publication of the American College of Neuropsychopharmacology, 40, 2648.CrossRefGoogle Scholar
  3. Azizian, A., Nestor, L. J., Payer, D., Monterosso, J. R., Brody, A. L., & London, E. D. (2010). Smoking reduces conflict-related anterior cingulate activity in abstinent cigarette smokers performing a Stroop task. Neuropsychopharmacology, 35, 775.CrossRefGoogle Scholar
  4. Bi, Y., Yuan, K., Guan, Y., Cheng, J., Zhang, Y., Li, Y., Yu, D., Qin, W., & Tian, J. (2017a). Altered resting state functional connectivity of anterior insula in young smokers. Brain Imaging and Behavior, 11, 155.CrossRefGoogle Scholar
  5. Bi, Y., Zhang, Y., Li, Y., Yu, D., Yuan, K., & Tian, J. (2017b). 12h abstinence-induced right anterior insula network pattern changes in young smokers. Drug and Alcohol Dependence, 176, 162.CrossRefGoogle Scholar
  6. Bloomfield, M. A., Pepper, F., Egerton, A., Demjaha, A., Tomasi, G., Mouchlianitis, E., Maximen, L., Veronese, M., Turkheimer, F., & Selvaraj, S. (2014). Dopamine function in cigarette smokers: an [18F]-DOPA PET study. Neuropsychopharmacology Official Publication of the American College of Neuropsychopharmacology, 39, 2397–2404.CrossRefGoogle Scholar
  7. Caeyenberghs, K., Siugzdaite, R., Drijkoningen, D., Marinazzo, D., & Swinnen, S. (2015). Functional connectivity density and balance in young patients with traumatic axonal injury. Brain Connectivity, 5(7), 423–432.CrossRefGoogle Scholar
  8. Campbell-Meiklejohn, D. K., Kanai, R., Bahrami, B., Bach, D. R., Dolan, R. J., Roepstorff, A., & Frith, C. D. (2012). Structure of orbitofrontal cortex predicts social influence. Current Biology: CB, 22, R123.CrossRefGoogle Scholar
  9. Charboneau, E. J., Dietrich, M. S., Park, S., Cao, A., Watkins, T. J., Blackford, J. U., Benningfield, M. M., Martin, P. R., Buchowski, M. S., & Cowan, R. L. (2013). Cannabis cue-induced brain activation correlates with drug craving in limbic and visual salience regions: Preliminary results. Psychiatry Research, 214, 122–131.CrossRefGoogle Scholar
  10. Chua, H. F., Ho, S. S., Jasinska, A. J., Polk, T. A., Welsh, R. C., Liberzon, I., & Strecher, V. J. (2011). Self-related neural response to tailored smoking-cessation messages predicts quitting. Nature Neuroscience, 14, 426–427.CrossRefGoogle Scholar
  11. Contreras, M., Ceric, F., & Torrealba, F. (2007). Inactivation of the interoceptive insula disrupts drug craving and malaise induced by lithium. Science, 318, 655–658.CrossRefGoogle Scholar
  12. Cooper, J. (2001). Diagnostic and Statistical Manual of Mental Disorders (4th edn, text revision) (DSM-IV-TR). British Journal of Psychiatry, 179, 97–98.CrossRefGoogle Scholar
  13. Cox, L. S., Tiffany, S. T., & Christen, A. G. (2001). Evaluation of the brief questionnaire of smoking urges (QSU-brief) in laboratory and clinical settings. Nicotine & tobacco research : official journal of the Society for Research on Nicotine and Tobacco, 3, 7.CrossRefGoogle Scholar
  14. Di, C. P., Guranda, M., Lagzdins, D., Tyndale, R. F., Gamaleddin, I., Selby, P., Boileau, I., & Le, F. B. (2016). Varenicline-Induced Elevation of Dopamine in Smokers: A Preliminary [(11)C]-(+)-PHNO PET Study. Neuropsychopharmacology, 41, 1513–1520.CrossRefGoogle Scholar
  15. Ding, J. R., Ding, X., Hua, B., Xiong, X., Wang, Q., & Chen, H. (2016). Abnormal functional connectivity density in patients with ischemic white matter lesions:An observational study. Medicine, 95, e4625.CrossRefGoogle Scholar
  16. Elliott, R., Dolan, R. J., & Frith, C. D. (2000). Dissociable Functions in the Medial and Lateral Orbitofrontal Cortex: Evidence from Human Neuroimaging Studies. Cerebral Cortex, 10, 308.CrossRefGoogle Scholar
  17. Feil, J., Sheppard, D., Fitzgerald, P. B., Yücel, M., Lubman, D. I., & Bradshaw, J. L. (2010). Addiction, compulsive drug seeking, and the role of frontostriatal mechanisms in regulating inhibitory control. Neuroscience & Biobehavioral Reviews, 35, 248.CrossRefGoogle Scholar
  18. Feng, D., Yuan, K., Li, Y., Cai, C., Yin, J., Bi, Y., Cheng, J., Guan, Y., Shi, S., & Yu, D. (2016). Intra-regional and inter-regional abnormalities and cognitive control deficits in young adult smokers. Brain Imaging and Behavior, 10, 506–516.CrossRefGoogle Scholar
  19. Fritz, H. C., Wittfeld, K., Schmidt, C. O., Domin, M., Grabe, H. J., Hegenscheid, K., Hosten, N., & Lotze, M. (2014). Current smoking and reduced gray matter volume-a voxel-based morphometry study. Neuropsychopharmacology Official Publication of the American College of Neuropsychopharmacology, 39, 2594.CrossRefGoogle Scholar
  20. Gaznick, N., Tranel, D., Mcnutt, A., & Bechara, A. (2014). Basal Ganglia Plus Insula Damage Yields Stronger Disruption of Smoking Addiction Than Basal Ganglia Damage Alone. Nicotine & Tobacco Research Official Journal of the Society for Research on Nicotine & Tobacco, 16, 445.CrossRefGoogle Scholar
  21. Goldstein, R. Z., & Volkow, N. D. (2011). Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nature Reviews Neuroscience, 12, 652.CrossRefGoogle Scholar
  22. Hanlon, C. A., Devries, W., Dowdle, L. T., West, J. A., Siekman, B., Li, X., & George, M. S. (2015). A comprehensive study of sensorimotor cortex excitability in chronic cocaine users: Integrating TMS and functional MRI data ☆. Drug and Alcohol Dependence, 157, 28.CrossRefGoogle Scholar
  23. Hayashi, T., Ko, J. H., Strafella, A. P., & Dagher, A. (2013). Dorsolateral prefrontal and orbitofrontal cortex interactions during self-control of cigarette craving. Proceedings of the National Academy of Sciences of the United States of America, 110, 4422–4427.CrossRefGoogle Scholar
  24. Heatherton, T. F., Kozlowski, L. T., Frecker, R. C., & Fagerstrom, K. O. (1991). The Fagerström Test for Nicotine Dependence: a revision of the Fagerstrom Tolerance Questionnaire. British Journal of Addiction, 86, 1119.CrossRefGoogle Scholar
  25. Hilario, M. R., Turner, J. R., & Blendy, J. A. (2012). Reward Sensitization: Effects of Repeated Nicotine Exposure and Withdrawal in Mice. Neuropsychopharmacology Official Publication of the American College of Neuropsychopharmacology, 37, 2661–2670.CrossRefGoogle Scholar
  26. Hu, R., Zhu, X., Cheng, D., He, W., Yan, Y., Song, J., et al. (2016). Graph self-representation method for unsupervised feature selection. In Neurocomputing.Google Scholar
  27. Huang, W., King, J. A., Sanouri Ursprung, W. W., Zheng, S., Zhang, N., Kennedy, D. N., Ziedonis, D., & DiFranza, J. R. (2014). The development and expression of physical nicotine dependence corresponds to structural and functional alterations in the anterior cingulate-precuneus pathway. Brain and Behavior, 4, 408–417.CrossRefGoogle Scholar
  28. Janes, A. C., Farmer, S., Peechatka, A. L., Frederick, B. B., & Lukas, S. E. (2015a). Insula-Dorsal Anterior Cingulate Cortex Coupling is Associated with Enhanced Brain Reactivity to Smoking Cues. Neuropsychopharmacology, 40, 1561–1568.CrossRefGoogle Scholar
  29. Janes, A. C., Park, M. T., Farmer, S., & Chakravarty, M. M. (2015b). Striatal morphology is associated with tobacco cigarette craving. Neuropsychopharmacology Official Publication of the American College of Neuropsychopharmacology, 40, 406–411.CrossRefGoogle Scholar
  30. Jasinska, A. J., Zorick, T., Brody, A. L., & Stein, E. A. (2014). Dual role of nicotine in addiction and cognition: a review of neuroimaging studies in humans. Neuropharmacology, 84, 111–122.CrossRefGoogle Scholar
  31. Jin, C., Zhang, T., Cai, C., Bi, Y., Li, Y., Yu, D., Zhang, M., & Yuan, K. (2016). Abnormal prefrontal cortex resting state functional connectivity and severity of internet gaming disorder. Brain Imaging and Behavior, 10, 719.CrossRefGoogle Scholar
  32. Kim, S. J., Sullivan, J. M., Wang, S., Cosgrove, K. P., & Morris, E. D. (2014). Voxelwise lp-ntPET for detecting localized, transient dopamine release of unknown timing: Sensitivity Analysis and Application to Cigarette Smoking in the PET Scanner. Human Brain Mapping, 35, 4876–4891.CrossRefGoogle Scholar
  33. Kober, H., & Ochsner, K. N. (2010). Prefrontal-striatal pathway underlies cognitive regulation of craving. Proceedings of the National Academy of Sciences of the United States of America, 107, 14811.CrossRefGoogle Scholar
  34. Kringelbach, M. L. (2005). The human orbitofrontal cortex: linking reward to hedonic experience. Nature Reiviews Neuroscience, 6, 691.CrossRefGoogle Scholar
  35. Le, F. B., Guranda, M., Wilson, A. A., Houle, S., Rusjan, P. M., Wing, V. C., Zawertailo, L., Busto, U., Selby, P., & Brody, A. L. (2014). Elevation of dopamine induced by cigarette smoking: novel insights from a [11C]−+-PHNO PET study in humans. Neuropsychopharmacology Official Publication of the American College of Neuropsychopharmacology, 39, 415–424.CrossRefGoogle Scholar
  36. Lei, C., & Zhu, X. (2017). Unsupervised feature selection via local structure learning and sparse learning. Multimedia Tools & Applications, (1).
  37. Lerman, C., Lesage, M. G., Perkins, K.A., O’Malley, S. S., Siegel, S. J., Benowitz, N. L., & Corrigall, W. A. (2007). Translational research in medication development for nicotine dependence. Nature Reviews Drug Discovery, 6, 746–762.Google Scholar
  38. Li, X., Hartwell, K. J., Borckardt, J., Prisciandaro, J. J., Saladin, M. E., Morgan, P. S., Johnson, K. A., LeMatty, T., Brady, K. T., & George, M. S. (2013). Volitional reduction of anterior cingulate cortex activity produces decreased cue craving in smoking cessation: a preliminary real-time fMRI study. Addiction Biology, 18, 739–748.CrossRefGoogle Scholar
  39. Li, Y., Yuan, K., Cai, C., Feng, D., Yin, J., Bi, Y., Shi, S., Yu, D., Jin, C., & von Deneen, K. M. (2015). Reduced frontal cortical thickness and increased caudate volume within fronto-striatal circuits in young adult smokers. Drug and Alcohol Dependence, 151, 211.CrossRefGoogle Scholar
  40. Li, Y., Yuan, K., Bi, Y., Guan, Y., Cheng, J., Zhang, Y., Shi, S., Lu, X., Yu, D., & Tian, J. (2016). Neural correlates of 12-h abstinence-induced craving in young adult smokers: a resting-state study. Brain Imaging and Behavior, 11, 1–8.Google Scholar
  41. Li, Y., Yuan, K., Guan, Y., Cheng, J., Bi, Y., Shi, S., Xue, T., Lu, X., Qin, W., & Yu, D. (2017). The implication of salience network abnormalities in young male adult smokers. Brain Imaging and Behavior, 11, 943–953.CrossRefGoogle Scholar
  42. Liu, C., Wei, Z., Chen, G., Tian, H., Jie, L., Qu, H., et al. (2017). Aberrant patterns of local and long-range functional connectivity densities in schizophrenia. Oncotarget, 8(29), 48196–48203.Google Scholar
  43. Martin-Soelch, C. (2013). Neuroadaptive changes associated with smoking: structural and functional neural changes in nicotine dependence. Brain Sciences, 3, 159.CrossRefGoogle Scholar
  44. Mcclernon, F. J., Kozink, R. V., & Rose, J. E. (2008). Individual Differences in Nicotine Dependence, Withdrawal Symptoms, and Sex Predict Transient fMRI-BOLD Responses to Smoking Cues. Neuropsychopharmacology Official Publication of the American College of Neuropsychopharmacology, 33(9), 2148.CrossRefGoogle Scholar
  45. Moran-Santa Maria, M. M., Hartwell, K. J., Hanlon, C. A., Canterberry, M., Lematty, T., Owens, M., Brady, K. T., & George, M. S. (2015). Right anterior insula connectivity is important for cue-induced craving in nicotine-dependent smokers. Addiction Biology, 20, 407–414.CrossRefGoogle Scholar
  46. Naqvi, N. H., Rudrauf, D., Damasio, H., & Bechara, A. (2007). Damage to the insula disrupts addiction to cigarette smoking. Science, 315, 531.CrossRefGoogle Scholar
  47. Nees, F., Witt, S. H., Lourdusamy, A., Vollstädt-Klein, S., Steiner, S., Poustka, L., Banaschewski, T., Barker, G. J., Büchel, C., & Conrod, P. J. (2013). Genetic risk for nicotine dependence in the cholinergic system and activation of the brain reward system in healthy adolescents. Neuropsychopharmacology Official Publication of the American College of Neuropsychopharmacology, 38, 2081.CrossRefGoogle Scholar
  48. Newberg, A., Lerman, C., Wintering, N., Ploessl, K., & Mozley, P. D. (2007). Dopamine transporter binding in smokers and nonsmokers. Clinical Nuclear Medicine, 32, 452–455.CrossRefGoogle Scholar
  49. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9, 97–113.CrossRefGoogle Scholar
  50. Rolls, E. T. (2000). The Orbitofrontal Cortex and Reward. Cerebral Cortex, 10, 284–294.CrossRefGoogle Scholar
  51. Rushworth, M. F. S., Behrens, T. E. J., Rudebeck, P. H., & Walton, M. E. (2007). Contrasting roles for cingulate and orbitofrontal cortex in decisions and social behaviour. Trends in Cognitive Sciences, 11, 168–176.CrossRefGoogle Scholar
  52. Scholpp, S., & Lumsden, A. (2010). Building a bridal chamber: development of the thalamus. Trends in Neurosciences, 33, 373–380.CrossRefGoogle Scholar
  53. Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage, 44, 83–98.CrossRefGoogle Scholar
  54. Sutherland, M. T., Riedel, M. C., Flannery, J. S., Yanes, J. A., Fox, P. T., Stein, E. A., & Laird, A. R. (2016). Chronic cigarette smoking is linked with structural alterations in brain regions showing acute nicotinic drug-induced functional modulations. Behavioral and Brain Functions, 12, 16.CrossRefGoogle Scholar
  55. Tomasi, D., & Volkow, N. D. (2010). Functional connectivity density mapping. Proceedings of the National Academy of Sciences of the United States of America, 107, 9885–9890.CrossRefGoogle Scholar
  56. Tomasi, D., & Volkow, N. D. (2011). Functional connectivity hubs in the human brain. Neuroimage, 57, 908–917.CrossRefGoogle Scholar
  57. Tomasi, D., & Volkow, N. D. (2012a). Abnormal Functional Connectivity in Children with Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, 71, 443.CrossRefGoogle Scholar
  58. Tomasi, D., & Volkow, N. D. (2012b). Gender differences in brain functional connectivity density. Human Brain Mapping, 33, 849.CrossRefGoogle Scholar
  59. Tomasi, D., Wang, G.-J., & Volkow, N. D. (2013). Energetic cost of brain functional connectivity. Proceedings of the National Academy of Sciences of the United States of America, 110, 13642–13647.CrossRefGoogle Scholar
  60. U.S. Department of Health and Human Services. (1988). The health consequences of smoking: Nicotine addiction. A report of the surgeon general (DHHS Publication No. [CDC] 88-8406). Washington, DC: U.S. Dept. of Health and Human Services, Public Health Services.Google Scholar
  61. Volkow, N. D., & Fowler, J. S. (2000). Addiction, a Disease of Compulsion and Drive: Involvement of the Orbitofrontal Cortex. Cerebral Cortex, 10, 318.CrossRefGoogle Scholar
  62. Volkow, N. D., Wang, G. J., Tomasi, D., & Baler, R. D. (2013). Unbalanced neuronal circuits in addiction. Current Opinion in Neurobiology, 23, 639–648.CrossRefGoogle Scholar
  63. Walton, M. E., Behrens, T. E. J., Buckley, M. J., Rudebeck, P. H., & Rushworth, M. F. S. (2010). Separable Learning Systems in the Macaque Brain and the Role of Orbitofrontal Cortex in Contingent Learning. Neuron, 65, 927.CrossRefGoogle Scholar
  64. Wing, V. C., Payer, D. E., Houle, S., George, T. P., & Boileau, I. (2015). Measuring cigarette smoking-induced cortical dopamine release: A [Â1Â1C]FLB-457 PET study. Neuropsychopharmacology, 40, 1417–1427.CrossRefGoogle Scholar
  65. Xue, Y., Luo, Y., Wu, P., Shi, H., Xue, L., Chen, C., Zhu, W., Ding, Z., Bao, Y., & Shi, J. (2012). A Memory Retrieval-Extinction Procedure to Prevent Drug Craving and Relapse. Science (New York, N.Y.), 336, 241.CrossRefGoogle Scholar
  66. Yip, S. W., Devito, E. E., Kober, H., Worhunsky, P. D., Carroll, K. M., & Potenza, M. N. (2014). Pretreatment measures of brain structure and reward-processing brain function in cannabis dependence: An exploratory study of relationships with abstinence during behavioral treatment 1. Drug and Alcohol Dependence, 140, 33–41.CrossRefGoogle Scholar
  67. Yu, R., Zhao, L., & Lu, L. (2011). Regional Grey and White Matter Changes in Heavy Male Smokers. PLoS One, 6, e27440.CrossRefGoogle Scholar
  68. Yu, D., Yuan, K., Bi, Y., Luo, L., Zhai, J., Liu, B., Li, Y., Cheng, J., Guan, Y., and Xue, T. (2017). Altered interhemispheric resting-state functional connectivity in young male smokers. Addiction Biology, 23(2), 772–780.Google Scholar
  69. Yuan, K., Yu, D., Bi, Y., Li, Y., Guan, Y., Liu, J., Zhang, Y., Qin, W., Lu, X., & Tian, J. (2016). The implication of frontostriatal circuits in young smokers: A resting-state study. Human Brain Mapping, 37(6), 2013–2026.CrossRefGoogle Scholar
  70. Yuan, K., Yu, D., Bi, Y., Wang, R., Li, M., Zhang, Y., Dong, M., Zhai, J., Li, Y., and Lu, X. (2017). The left dorsolateral prefrontal cortex and caudate pathway: New evidence for cue-induced craving of smokers. Human Brain Mapping, 38(9), 4644–4656.Google Scholar
  71. Zhang, S., Li, X., Ming, Z., Zhu, X., & Wang, R. (2017). Efficient kNN Classification With Different Numbers of Nearest Neighbors. IEEE Transactions on Neural Networks and Learning Systems, PP(99), 1–12.CrossRefGoogle Scholar
  72. Zhao, L. Y., Tian, J., Wang, W., Qin, W., Shi, J., Li, Q., Yuan, K., Dong, M. H., Yang, W. C., & Wang, Y. R. (2012). The Role of Dorsal Anterior Cingulate Cortex in the Regulation of Craving by Reappraisal in Smokers. PLoS One, 7, e43598.CrossRefGoogle Scholar
  73. Zheng, W., Zhu, X., Zhu, Y., Hu, R., & Lei, C. (2017). Dynamic graph learning for spectral feature selection. Multimedia Tools and Applications.
  74. Zhu, X., Li, X., Zhang, S., Xu, Z., Yu, L., & Wang, C. (2017). Graph PCA Hashing for Similarity Search. IEEE Transactions on Multimedia, PP(99).
  75. Zhu, X., Zhang, S., Hu, R., Zhu, Y., & Song, J. (2018). Local and Global Structure Preservation for Robust Unsupervised Spectral Feature Selection. IEEE Transactions on Knowledge and Data Engineering, 30(3), 517–529.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Computer Science and Information TechnologyGuangxi Normal UniversityGuilinPeople’s Republic of China
  2. 2.Guangxi Key Lab of Multi-Source Information Mining and SecurityGuilinPeople’s Republic of China
  3. 3.School of Life Science and TechnologyXidian UniversityXi’anPeople’s Republic of China
  4. 4.Engineering Research Center of Molecular and Neuro ImagingMinistry of EducationXi’anPeople’s Republic of China
  5. 5.Information Processing Laboratory, School of Information EngineeringInner Mongolia University of Science and TechnologyBaotouPeople’s Republic of China
  6. 6.Department of NeurosurgeryWuxiPeople’s Republic of China

Personalised recommendations