Advertisement

The relationship of cerebral microbleeds to cognition and incident dementia in non-demented older individuals

  • Matt Paradise
  • Adam Seruga
  • John D. Crawford
  • Joga Chaganti
  • Anbupalam Thalamuthu
  • Nicole A. Kochan
  • Henry Brodaty
  • Wei Wen
  • Perminder S. Sachdev
Original Research
  • 135 Downloads

Abstract

Cerebral microbleeds (CMB), suspected markers of hemorrhage-prone microangiopathy, are common in patients with cerebrovascular disease and in those with cognitive impairment. Their longitudinal relationship with cognitive decline and incident dementia in non-demented community-dwelling older individuals has been insufficiently examined. 302 adults aged 70–90 participating in the population-based Sydney Memory and Ageing Study underwent a susceptibility-weighted imaging (SWI) MRI sequence. The relationship of CMB with performance on neuropsychological tests was examined both cross-sectionally and longitudinally, over a mean of 4 years. The association with cases of incident dementia during this period was also examined. The prevalence of CMB was 20%. In cross-sectional analysis, after adjusting for demographics and vascular risk factors, there was a significant association between the presence of CMB and poorer executive function. CMB were not associated with global cognition or other cognitive domains. On longitudinal analysis, after adjusting for demographics and vascular risk factors, there was a greater decline in visuospatial ability in those with CMB compared to those without. The presence of CMB was not associated with increased progression to dementia. CMB are associated with impairments in specific cognitive domains: executive function and decline in visuospatial ability, independent of other markers of CVD including white matter hyperintensities. This suggests a direct contribution of CMB to cognitive impairment although no significant difference in incident dementia rates was observed.

Keywords

Cerebral microbleeds cognitive function dementia old age MRI SWI 

Notes

Acknowledgements

The authors thank all participants and their supporters in the Sydney Memory and Ageing Study (MAS), and the MAS research team.

Funding

This study was supported by the National Health and Medical Research Council (NHMRC) of Australia Program Grant (no. 350833) and Capacity Building Grant (no. 568940). Dr. Paradise was funded by an Australian National University/NHMRC NNIDR – DCRC Early Diagnosis and Prevention Shared Grant. Dr. Crawford and Dr. Kochan were supported by NHMRC Program Grant (no. 568969).

Compliance with ethical standards

Conflict of interest

Author Matt Paradise, author Adam Seruga, author John D. Crawford, author Joga Chaganti, author Anbupalam Thalamuthu, author Nicole A. Kochan, author Henry Brodaty, author Wei Wen and author Perminder S. Sachdev declare they have no conflict of interest.

Informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

Supplementary material

11682_2018_9883_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 18 kb)

References

  1. Akoudad, S., Wolters, F. J., Viswanathan, A., & et al. (2016). Association of cerebral microbleeds with cognitive decline and dementia. JAMA Neurology,  https://doi.org/10.1001/jamaneurol.2016.1017.
  2. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC, USA: American Psychiatric Publishing.Google Scholar
  3. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: Author.CrossRefGoogle Scholar
  4. Ayaz, M., Boikov, A. S., Haacke, E. M., Kido, D. K., & Kirsch, W. M. (2010). Imaging cerebral microbleeds using susceptibility weighted imaging: one step toward detecting vascular dementia. Journal of Magnetic Resonance Imaging, 31(1), 142–148.  https://doi.org/10.1002/jmri.22001.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Banerjee, G., Wilson, D., Jäger, H. R., & Werring, D. J. (2016). Novel imaging techniques in cerebral small vessel diseases and vascular cognitive impairment. Biochimica et Biophysica Acta, 1862(5), 926–938.  https://doi.org/10.1016/j.bbadis.2015.12.010.CrossRefPubMedGoogle Scholar
  6. Benton, A. L., Sivan, A. B., & Spreen, O. (1996). Der Benton Test (7th ed.). Bern: Huber.Google Scholar
  7. Brown, L. A., Brockmole, J. R., Gow, A. J., & Deary, I. J. (2012). Processing speed and visuospatial executive function predict visual working memory ability in older adults. Experimental Aging Research, 38(1), 1–19.  https://doi.org/10.1080/0361073x.2012.636722.CrossRefPubMedGoogle Scholar
  8. Charidimou, A., Soo, Y., Heo, J. H., & Srikanth, V. (2016). A call for researchers to join the META-MICROBLEEDS Consortium. The Lancet Neurology, 15(9), 900.  https://doi.org/10.1016/s1474-4422(16)30124-7.CrossRefPubMedGoogle Scholar
  9. Chiang, G. C., Cruz Hernandez, J. C., Kantarci, K., Jack, C. R., Weiner, M. W., & Initiative, A. s. D. N. (2015). Cerebral Microbleeds, CSF p-Tau, and Cognitive Decline: Significance of Anatomic Distribution. American Journal of Neuroradiology, 36(9), 1635–1641.  https://doi.org/10.3174/ajnr.A4351.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chung, C. P., Chou, K. H., Chen, W. T., Liu, L. K., Lee, W. J., Chen, L. K., et al. (2016). Strictly Lobar Cerebral Microbleeds Are Associated With Cognitive Impairment. Stroke, 47(10), 2497–2502.  https://doi.org/10.1161/strokeaha.116.014166.CrossRefPubMedGoogle Scholar
  11. Cordonnier, C., Potter, G. M., Jackson, C. A., Doubal, F., Keir, S., Sudlow, C. L., et al. (2009). Improving interrater agreement about brain microbleeds: development of the Brain Observer MicroBleed Scale (BOMBS). Stroke, 40(1), 94–99.  https://doi.org/10.1161/STROKEAHA.108.526996.CrossRefPubMedGoogle Scholar
  12. D'Agostino Sr., R. B., Vasan, R. S., Pencina, M. J., Wolf, P. A., Cobain, M., Massaro, J. M., et al. (2008). General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation, 117(6), 743–753.  https://doi.org/10.1161/CIRCULATIONAHA.107.699579.CrossRefPubMedGoogle Scholar
  13. Ding, J., Sigurethsson, S., Jonsson, P. V., Eiriksdottir, G., Meirelles, O., Kjartansson, O., et al. (2017). Space and location of cerebral microbleeds, cognitive decline, and dementia in the community. Neurology, 88(22), 2089–2097.  https://doi.org/10.1212/wnl.0000000000003983.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fazekas, F., Kleinert, R., Roob, G., Kleinert, G., Kapeller, P., Schmidt, R., et al. (1999). Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. American Journal of Neuroradiology, 20(4), 637–642.PubMedGoogle Scholar
  15. Greenberg, S. M., Vernooij, M. W., Cordonnier, C., Viswanathan, A., Al-Shahi Salman, R., Warach, S., et al. (2009). Cerebral microbleeds: a guide to detection and interpretation. The Lancet Neurology, 8(2), 165–174.  https://doi.org/10.1016/S1474-4422(09)70013-4.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gregoire, S. M., Chaudhary, U. J., Brown, M. M., Yousry, T. A., Kallis, C., Jager, H. R., et al. (2009). The Microbleed Anatomical Rating Scale (MARS): Reliability of a tool to map brain microbleeds. Neurology, 73(21), 1759–1766.  https://doi.org/10.1212/wnl.0b013e3181c34a7d.CrossRefPubMedGoogle Scholar
  17. Gregoire, S. M., Scheffler, G., Jäger, H. R., Yousry, T. A., Brown, M. M., Kallis, C., et al. (2013). Strictly lobar microbleeds are associated with executive impairment in patients with ischemic stroke or transient ischemic attack. Stroke, 44(5), 1267–1272.  https://doi.org/10.1161/STROKEAHA.111.000245.CrossRefPubMedGoogle Scholar
  18. Haller, S., Bartsch, A., Nguyen, D., Rodriguez, C., Emch, J., Gold, G., et al. (2010). Cerebral microhemorrhage and iron deposition in mild cognitive impairment: susceptibility-weighted MR imaging assessment. Radiology, 257(3), 764–773.  https://doi.org/10.1148/radiol.10100612.CrossRefPubMedGoogle Scholar
  19. Hilal, S. M. M. P. H., Saini, M. M. D., Tan, C. S. P., Catindig, J. A. M. D., Koay, W. I. B., Niessen, W. J. P., et al. (2014). Cerebral Microbleeds and Cognition: The Epidemiology of Dementia in Singapore Study. Alzheimer Disease & Associated Disorders, 28(2), 106–112.CrossRefGoogle Scholar
  20. Jacova, C., Hsiung, G. Y., & Feldman, H. H. (2006). Dropouts and refusals in observational studies: lessons for prevention trials. Neurology, 67(9 Suppl 3), S17–S20.CrossRefPubMedGoogle Scholar
  21. Kaplan, E. (2001). The Boston Naming Test. Philadelphia: Lippincott Williams Wilkins.Google Scholar
  22. Kirsch, W., McAuley, G., Holshouser, B., Petersen, F., Ayaz, M., Vinters, H. V., et al. (2009). Serial susceptibility weighted MRI measures brain iron and microbleeds in dementia. Journal of Alzheimer's Disease, 17(3), 599–609.  https://doi.org/10.3233/JAD-2009-1073.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Koncz, R., & Sachdev, P. S. (2018). Are the brain's vascular and Alzheimer pathologies additive or interactive? Current Opinion in Psychiatry, 31(2), 147–152.  https://doi.org/10.1097/yco.0000000000000395.PubMedCrossRefGoogle Scholar
  24. Lezak, M. D. (2004). Neuropsychological assessment. USA: Oxford University Press.Google Scholar
  25. Li, X., Yuan, J., Yang, L., Qin, W., Yang, S., Li, Y., et al. (2017). The significant effects of cerebral microbleeds on cognitive dysfunction: An updated meta-analysis. PLoS One, 12(9), e0185145.  https://doi.org/10.1371/journal.pone.0185145.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Martinez-Ramirez, S., Greenberg, S. M., & Viswanathan, A. (2014). Cerebral microbleeds: overview and implications in cognitive impairment. Alzheimer's Research & Therapy, 6(3), 33.  https://doi.org/10.1186/alzrt263.CrossRefGoogle Scholar
  27. McFarland, D. J. (2013). Modeling Individual Subtests of the WAIS IV with Multiple Latent Factors. PLoS One, 8(9), e74980.  https://doi.org/10.1371/journal.pone.0074980.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Meier, I. B., Gu, Y., Guzaman, V. A., Wiegman, A. F., Schupf, N., Manly, J. J., et al. (2014). Lobar microbleeds are associated with a decline in executive functioning in older adults. Cerebrovascular Diseases, 38(5), 377–383.  https://doi.org/10.1159/000368998.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Miwa, K., Tanaka, M., Okazaki, S., Yagita, Y., Sakaguchi, M., Mochizuki, H., et al. (2014). Multiple or mixed cerebral microbleeds and dementia in patients with vascular risk factors. Neurology, 83(7), 646–653.  https://doi.org/10.1212/wnl.0000000000000692.CrossRefPubMedGoogle Scholar
  30. Nandigam, R. N. K., Viswanathan, A., Delgado, P., Skehan, M. E., Smith, E. E., Rosand, J., et al. (2008). MR Imaging Detection of Cerebral Microbleeds: Effect of Susceptibility-Weighted Imaging, Section Thickness, and Field Strength. American Journal of Neuroradiology, 30(2), 338–343.  https://doi.org/10.3174/ajnr.a1355.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Patel, B., Lawrence, A. J., Chung, A. W., Rich, P., Mackinnon, A. D., Morris, R. G., et al. (2013). Cerebral microbleeds and cognition in patients with symptomatic small vessel disease. Stroke, 44(2), 356–361.  https://doi.org/10.1161/STROKEAHA.112.670216.CrossRefPubMedGoogle Scholar
  32. Poels, M. M., Ikram, M. A., van der Lugt, A., Hofman, A., Niessen, W. J., Krestin, G. P., et al. (2012). Cerebral microbleeds are associated with worse cognitive function: the Rotterdam Scan Study. Neurology, 78(5), 326–333.  https://doi.org/10.1212/WNL.0b013e3182452928.CrossRefPubMedGoogle Scholar
  33. Poels, M. M., Vernooij, M. W., Ikram, M. A., Hofman, A., Krestin, G. P., van der Lugt, A., et al. (2010). Prevalence and risk factors of cerebral microbleeds: an update of the Rotterdam scan study. Stroke, 41(10 Suppl), S103–S106.  https://doi.org/10.1161/STROKEAHA.110.595181.CrossRefPubMedGoogle Scholar
  34. Qiu, C., Cotch, M. F., Sigurdsson, S., Garcia, M., Klein, R., Jonasson, F., et al. (2008). Retinal and Cerebral Microvascular Signs and Diabetes: The Age, Gene/Environment Susceptibility-Reykjavik Study. Diabetes, 57(6), 1645–1650.  https://doi.org/10.2337/db07-1455.CrossRefPubMedGoogle Scholar
  35. Qiu, C., Cotch, M. F., Sigurdsson, S., Jonsson, P. V., Jonsdottir, M. K., Sveinbjrnsdottir, S., et al. (2010). Cerebral microbleeds, retinopathy, and dementia: the AGES-Reykjavik Study. Neurology, 75(24), 2221–2228.  https://doi.org/10.1212/WNL.0b013e3182020349.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Romero, J. R., Beiser, A., Himali, J. J., Shoamanesh, A., DeCarli, C., & Seshadri, S. (2017). Cerebral microbleeds and risk of incident dementia: the Framingham Heart Study. Neurobiology of Aging, 54, 94–99.  https://doi.org/10.1016/j.neurobiolaging.2017.02.018.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sachdev, P. S., Brodaty, H., Reppermund, S., Kochan, N. A., Trollor, J. N., Draper, B., et al. (2010). The Sydney Memory and Ageing Study (MAS): methodology and baseline medical and neuropsychiatric characteristics of an elderly epidemiological non-demented cohort of Australians aged 70–90 years. International Psychogeriatrics, 22(08), 1248–1264.  https://doi.org/10.1017/s1041610210001067.CrossRefPubMedGoogle Scholar
  38. Schrag, M., McAuley, G., Pomakian, J., Jiffry, A., Tung, S., Mueller, C., et al. (2010). Correlation of hypointensities in susceptibility-weighted images to tissue histology in dementia patients with cerebral amyloid angiopathy: a postmortem MRI study. Acta Neuropathologica, 119(3), 291–302.  https://doi.org/10.1007/s00401-009-0615-z.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Shoamanesh, A., & Benavente, O. (2011). Cerebral Microbleeds: Histopathological Correlation of Neuroimaging. Neurology, 76(9), A308–A308.Google Scholar
  40. Strauss, E., Sherman, E. M. S., & Spreen, O. (2006). A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary (3rd ed.). New York, NY, USA: Oxford University Press.Google Scholar
  41. van Norden, A. G., van den Berg, H. A., de Laat, K. F., Gons, R. A., van Dijk, E. J., & de Leeuw, F. E. (2011). Frontal and temporal microbleeds are related to cognitive function: the Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Cohort (RUN DMC) Study. Stroke, 42(12), 3382–3386.  https://doi.org/10.1161/STROKEAHA.111.629634.CrossRefPubMedGoogle Scholar
  42. Vernooij, M. W., van der Lugt, A., Ikram, M. A., Wielopolski, P. A., Niessen, W. J., Hofman, A., et al. (2008). Prevalence and risk factors of cerebral microbleeds: The Rotterdam Scan Study. Neurology, 70(14), 1208–1214.  https://doi.org/10.1212/01.wnl.0000307750.41970.d9.CrossRefPubMedGoogle Scholar
  43. Wechsler, D. (1981). WAIS-R manual. New York: The Psychological Corporation.Google Scholar
  44. Wechsler, D. (1997a). Wechsler Adult Intelligence Scale-III (WAIS-III) (3rd ed.). San Antonio, TX, USA: The Psychological Corporation.Google Scholar
  45. Wechsler, D. (1997b). Wechsler Memory Scale (3rd ed.). San Antonio, TX, USA: The Psychological Corporation.Google Scholar
  46. Wen, W., & Sachdev, P. (2004). The topography of white matter hyperintensities on brain MRI in healthy 60- to 64-year-old individuals. NeuroImage, 22(1), 144–154.  https://doi.org/10.1016/j.neuroimage.2003.12.027.CrossRefPubMedGoogle Scholar
  47. Werring, D. J. (2004). Cognitive dysfunction in patients with cerebral microbleeds on T2*-weighted gradient-echo MRI. Brain, 127(10), 2265–2275.  https://doi.org/10.1093/brain/awh253.CrossRefPubMedGoogle Scholar
  48. Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L. O., et al. (2004). Mild cognitive impairment - beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. Journal of Internal Medicine, 256(3), 240–246.  https://doi.org/10.1111/j.1365-2796.2004.01380.x.CrossRefPubMedGoogle Scholar
  49. Won Seo, S., Hwa Lee, B., Kim, E. J., Chin, J., Sun Cho, Y., Yoon, U., et al. (2007). Clinical Significance of Microbleeds in Subcortical Vascular Dementia. Stroke, 38(6), 1949–1951.  https://doi.org/10.1161/strokeaha.106.477315.CrossRefGoogle Scholar
  50. Wu, R. H., Feng, C., Zhao, Y., Jin, A. P., Fang, M., & Liu, X. (2014). A Meta-Analysis of Association between Cerebral Microbleeds and Cognitive Impairment. Medical Science Monitor, 20, 2189–2198.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Yakushiji, Y., Charidimou, A., Hara, M., Eriguchi, M., Noguchi, T., Nishihara, M., et al. (2015). Small vessel disease the concept of "total small vessel disease score" in healthy adults: Validation in the Kashima Scan study. [Conference Abstract]. International Journal of Stroke, 10, 374.Google Scholar
  52. Yakushiji, Y., Eriguchi, M., Nanri, Y., Hara, H., Charidimou, A., Werring, D. J., et al. (2014). Basal Ganglia Cerebral Microbleeds and Global Cognitive Function: The Kashima Scan Study. Journal of Stroke and Cerebrovascular Diseases,  https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.09.015.
  53. Yakushiji, Y., Noguchi, T., Hara, M., Nishihara, M., Eriguchi, M., Nanri, Y., et al. (2012). Distributional impact of brain microbleeds on global cognitive function in adults without neurological disorder. Stroke, 43(7), 1800–1805.  https://doi.org/10.1161/strokeaha.111.647065.CrossRefPubMedGoogle Scholar
  54. Yates, P. A., Villemagne, V. L., Ellis, K. A., Desmond, P. M., Masters, C. L., & Rowe, C. C. (2014). Cerebral microbleeds: a review of clinical, genetic, and neuroimaging associations. Frontiers in Neurology, 4, 205.  https://doi.org/10.3389/fneur.2013.00205.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Healthy Brain Ageing, School of Psychiatry, UNSW MedicineUniversity of New South WalesSydneyAustralia
  2. 2.Hunter New England ImagingJohn Hunter HospitalNewcastleAustralia
  3. 3.Department of RadiologySt Vincent’s HospitalSydneyAustralia
  4. 4.Neuropsychiatric InstitutePrince of Wales HospitalRandwickAustralia
  5. 5.Dementia Centre for Research CollaborationUniversity of New South WalesSydneyAustralia

Personalised recommendations